Abstract:
A method for making a sputtering target including steps of encapsulating and hot isostatically pressing at least one mass of metal powder (e.g., tantalum), having a particle size ranging from about 10 to about 1000 μm, with at least about 10 percent by weight of particles having a particle size greater than about 150 μm (for example, about 29 to about 56 percent (e.g., about 35 to about 47 percent) by weight of the particles in the at least one mass of metal powder having a particle size that is larger than 150 microns, but below about 250 μm), for defining at least a portion of a sputtering target body, having an essentially theoretical random and substantially uniform crystallographic texture.
Abstract:
A method for making a sputtering target including steps of encapsulating and hot isostatically pressing at least one mass of metal powder (e.g., tantalum), having a particle size ranging from about 10 to about 1000 μm, with at least about 10 percent by weight of particles having a particle size greater than about 150 μm (for example, about 29 to about 56 percent (e.g., about 35 to about 47 percent) by weight of the particles in the at least one mass of metal powder having a particle size that is larger than 150 microns, but below about 250 μm), for defining at least a portion of a sputtering target body, having an essentially theoretical random and substantially uniform crystallographic texture.
Abstract:
In various embodiments, metallic wires are fabricated by combining one or more powders of substantially spherical metal particles with one or more powders of non-spherical particles within one or more optional metallic tubes. The metal elements within the powders (and the one or more tubes, if present) collectively define a high entropy alloy of five or more metallic elements or a multi-principal element alloy of four or more metallic elements.
Abstract:
In various embodiments, metallic wires are fabricated by combining one or more powders of substantially spherical metal particles with one or more powders of non-spherical particles within one or more optional metallic tubes. The metal elements within the powders (and the one or more tubes, if present) collectively define a high entropy alloy of five or more metallic elements or a multi-principal element alloy of four or more metallic elements.
Abstract:
In various embodiments, additive manufacturing is utilized to fabricate three-dimensional metallic parts using metallic alloy wire as a feedstock material.
Abstract:
A method for making a sputtering target including steps of encapsulating and hot isostatically pressing at least one mass of metal powder (e.g., tantalum), having a particle size ranging from about 10 to about 1000 μm, with at least about 10 percent by weight of particles having a particle size greater than about 150 μm (for example, about 29 to about 56 percent (e.g., about 35 to about 47 percent) by weight of the particles in the at least one mass of metal powder having a particle size that is larger than 150 microns, but below about 250 μm), for defining at least a portion of a sputtering target body, having an essentially theoretical random and substantially uniform crystallographic texture.