Abstract:
A soap composition for the removal and prevention of scale in aqueous media comprising a 1:1 stoichiometric equivalent of an organic carboxylic acid and an amine base. The organic carboxylic acid is selected from the group consisting of hydroxy-acetic, citric, acetic, gluconic, salicylic, tartaric and benzoic, and mixtures thereof. The amine base is selected from the group consisting of monoisopropanolamine, diisopropanolamine, triisopropanolamine, monoethanolamine, diethanolamine, triethanolamine, diethylamine, and mixtures thereof.
Abstract:
A method of cleaning and maintaining potable water distribution system which have reduced flow due to an increase of water scale deposits, sediment, and the like on the inside surface of the pipe is disclosed. An aqueous acidic cleaning solution (12) is introduced and circulated through the pipe (25) to be treated for a sufficient time to dissolve and loosen the scale and sediment, and the spent solution containing dissolved or suspended scale and sediment is flushed from the pipe (25) to provide a cleaned pipe with improved water flow. It is also desirable to flush the water distribution pipe system with high pressure water after the treatment to remove loosened scale and sediment that was not removed during the circulation and flushing of the treating solution (12).
Abstract:
A method of cleaning and maintaining a hot water heater tank contaminated with water scale and sediment by introducing an aqueous acidic treatment solution from a reservoir (8), retaining the acidic solution for a sufficient time to dissolve or suspend said scale and sediment, and then draining the spent solution containing the dissolved or suspended scale and sediment to provide a clean hot water heater tank (1).
Abstract:
An automatic control system for maintaining the quality of water in a cooling tower utilizes a probe (38) which senses the oxygen reduction potential (ORP) of a soap having a 1:1 stoichiometric equivalent of an organic carboxylic acid and an amine base in the water. The soap is pumped from a chemical supply means (20) containing the soap in response to the ORP of the soap in the water falling below a predetermined threshold. A second sensing probe measures the conductivity (in MHos) of the water as a factor of the total dissolved solids (TDS) to control the bleed-off or blow-down of the water. The chemicals, which are supplied for maintaining the ORP, permit significantly higher total dissolved solids in the water than with standard cooling tower systems, without the buildup of scale. As a consequence, water consumption is significantly reduced; and the system functions automatically, without requiring periodic visual inspection, water analysis or manual operation.