Abstract:
A peristaltic pump includes a rotor and first and second rollers mounted on the rotor. The first and second rollers rotate between a disengaged, initially engaged and a fully engaged position with respect to a section of tubing. The rollers begin to occlude the tubing when in the initially engaged positon and fully occlude the tubing when in the fully engaged position. The pump also includes an encoder and a rotor controller. The encoder monitors the position of the first and second rollers as the rotor rotates. The rotor controller is in electrical communication with the encoder and controls the operation of the pump and rotor. The controller stops the rotation of the rotor in response to a stop command and based upon the monitored position of the first and second rollers such that either the first or second roller remains in the fully engaged positon.
Abstract:
An imaging system for a rotatable object includes an imaging unit configured to take a series of images of a portion of the rotatable object and a light source. The light source is directed at the rotatable object and is configured to generate pulses of light that illuminate the rotatable object during rotation of the rotatable object and allow the imaging unit to take the series of images of the rotatable object. The system also includes a synchronizer that monitors the rotational position of the rotatable object as it rotates, and a controller in communication with the imaging unit, the light source, and the synchronizer. The controller controls the operation of the imaging unit and/or the light source based upon the rotational position of the rotatable object such that each of the series of images is taken at the same rotational position of the rotatable object.
Abstract:
A method for the simultaneous concentration of multiple toxins from large volumes of water. The method includes the steps of providing a disposable separation centrifuge bowl, the centrifuge bowl including a positively charged material at it's inner core. A large water sample contaminated with toxins from a group consisting of protozoa, bacteria, bacterial spores, and toxins is delivered to the centrifuge bowl. A centrifugal force is applied to the separation bowl. The water sample is concentrated to remove large particles of the toxins in the bowl due to the centrifugal forces. The concentrated water sample is passes through the positively charged inner core to capture any remaining concentrated targets by electrostatic forces and the concentrated targets are eluted.
Abstract:
A volume measurement system for a fluid processing device includes a fluid container, an imaging unit, and a controller. The container includes a housing defining the structure of the fluid container, and a plurality of fluid chambers. The fluid chambers collect and/or store fluid from the fluid processing device, and each have a port that allows fluid to enter and/or exit the fluid chambers. The imaging unit takes images of the fluid chambers and is positioned to view a level of fluid in each of the chambers. The controller is in communication with the imaging unit and determines the volume of fluid within each of the fluid chambers based upon the viewed level of fluid in the fluid chambers.
Abstract:
A portable blood storage device includes an outer housing an inner housing. The outer housing defines the structure of the blood storage device. The inner housing is located within the outer housing and has an interior cavity for storing collected blood and/or blood components. The inner housing has an open top to allow access to the interior cavity. The storage device also has an inlet duct and a return duct located within the interior cavity. The inlet duct is fluidly connectable to a cooling device and brings conditioned air into the storage device when fluidly connected to the cooling device. The return duct is also fluidly connectable to the cooling device and returns exhaust air to the cooling device when fluidly connected.
Abstract:
Methods and apparatus for analyzing surface properties of particles are provided. A method for analyzing the surface properties of the particle includes a associating a first particle with a first capture zone having a specific binding affinity for a first chemical species, applying an optical force to the first particle, sensing a response of the first particle to the optical force, and using the sensed response to determine the presence, absence or quantity of the first chemical species on the first particle surface. This process may be repeated in parallel to test multiple particles. In addition to directly testing the surface properties of the particles, the method can be used in direct, indirect and competitive assays to determine the presence, absence or quantity of free or immobilized analytes. A fluidic cartridge with capture zones having avidities that are tuned for the use of optical forces is provided. A software routine for performing the method is also provided.
Abstract:
An imaging system for a rotatable object includes an imaging unit configured to take a series of images of a portion of the rotatable object and a light source. The light source is directed at the rotatable object and is configured to generate pulses of light that illuminate the rotatable object during rotation of the rotatable object and allow the imaging unit to take the series of images of the rotatable object. The system also includes a synchronizer that monitors the rotational position of the rotatable object as it rotates, and a controller in communication with the imaging unit, the light source, and the synchronizer. The controller controls the operation of the imaging unit and/or the light source based upon the rotational position of the rotatable object such that each of the series of images is taken at the same rotational position of the rotatable object.
Abstract:
A volume measurement system for a fluid processing device includes a fluid container, an imaging unit, and a controller. The container includes a housing defining the structure of the fluid container, and a plurality of fluid chambers. The fluid chambers collect and/or store fluid from the fluid processing device, and each have a port that allows fluid to enter and/or exit the fluid chambers. The imaging unit takes images of the fluid chambers and is positioned to view a level of fluid in each of the chambers. The controller is in communication with the imaging unit and determines the volume of fluid within each of the fluid chambers based upon the viewed level of fluid in the fluid chambers.
Abstract:
Methods and apparatus for analyzing surface properties of particles are provided. A method for analyzing the surface properties of the particle includes a associating a first particle with a first capture zone having a specific binding affinity for a first chemical species, applying an optical force to the first particle, sensing a response of the first particle to the optical force, and using the sensed response to determine the presence, absence or quantity of the first chemical species on the first particle surface. This process may be repeated in parallel to test multiple particles. In addition to directly testing the surface properties of the particles, the method can be used in direct, indirect and competitive assays to determine the presence, absence or quantity of free or immobilized analytes. A fluidic cartridge with capture zones having avidities that are tuned for the use of optical forces is provided. A software routine for performing the method is also provided.
Abstract:
A peristaltic pump includes a rotor and first and second rollers mounted on the rotor. The first and second rollers rotate between a disengaged, initially engaged and a fully engaged position with respect to a section of tubing. The rollers begin to occlude the tubing when in the initially engaged positon and fully occlude the tubing when in the fully engaged position. The pump also includes an encoder and a rotor controller. The encoder monitors the position of the first and second rollers as the rotor rotates. The rotor controller is in electrical communication with the encoder and controls the operation of the pump and rotor. The controller stops the rotation of the rotor in response to a stop command and based upon the monitored position of the first and second rollers such that either the first or second roller remains in the fully engaged positon.