Abstract:
Ein plattenförmiges Lasermedium hat eine Durchgangsbohrung um eine Strömung eines Kühlmediums bereitzustellen. Die Lasermediumeinheit umfasst die Vielzahl Lasermedien. Eine Laserstrahl-Verstärkungsanordnung umfasst eine Lasermediumeinheit 10, eine Anregungslichtquelle 21, die bewirkt, dass Anregungslicht in die Lasermediumeinheit 10 eintritt, eine Durchgangsbohrung 16a eines Fensterelements als Einheit zum Bereitstellen des Kühlmediums in einer Durchgangsbohrung 14a des Lasermediums 14, und ein Kühlmedium-Strömungspfad F1, der um die Lasermediumeinheit 10 herum angeordnet ist.
Abstract:
Die Laserverstärkungsvorrichtung umfasst mehrere plattenförmige Lasermedium-Komponenten (M1 bis M4), die entlang einer Dickenrichtung ausgerichtet sind, und Prismen (P1 bis P3), die die Lasermedium-Komponenten optisch koppeln. Jede der Lasermedium-Komponenten ist mit einer Hauptfläche, auf die ein Saatlicht trifft, und einer Seitenfläche, die die Hauptfläche umgibt, ausgebildet. Ein Anregungslicht fällt von mindestens einer Seitenfläche einer bestimmten Lasermedien-Komponente von den mehreren Lasermedium-Komponenten ein. Das Anregungslicht fällt durch das Prisma auf eine Seitenfläche der Lasermedium-Komponente neben dem Prisma ein.
Abstract:
Laserverstärkungsvorrichtung, umfassend:mehrere plattenförmige Lasermedium-Komponenten (M1 - M4), die so angeordnet sind, dass sie entlang einer Dickenrichtung (X) ausgerichtet sind; undein Prisma (P1, P2, P3), das so konfiguriert ist, dass es die Lasermedium-Komponenten optisch koppelt,wobei jede der Lasermedium-Komponenten umfasst:eine Hauptfläche (YZ), auf die ein Saatlicht (seed 1) einfällt, undeine Seitenfläche (XZ, XY) die so konfiguriert ist, dass sie die Hauptfläche umgibt,wobei ein Anregungslicht (EXCIT-1- EXCIT-4) von mindestens einer Seitenfläche (IN1, IN4) einer bestimmten Lasermedium-Komponente der mehreren Lasermedium-Komponenten einfällt, und das Anregungslicht durch das Prisma auf eine dem Prisma benachbarte Seitenfläche der Lasermedium-Komponente einfällt.
Abstract:
PROBLEM TO BE SOLVED: To provide a laser medium unit capable of more reducing the influence of heating of a laser gain medium, and to provide a laser amplifier and a laser oscillator including the same, and a cooling method.SOLUTION: A laser medium unit 10A according to one embodiment includes a laser medium 16 produced by bonding at least one laser gain medium 22 to a first surface 20a and a second surface 20b of an optical medium 20, and a container for housing the laser medium and having a cooling medium flow path through which a cooling medium C for cooling the laser gain medium flows. The cooling medium flow path has a supply flow path 34 for supplying the cooling medium to an arrangement space 28 of the laser medium, and a discharge flow path 30 for discharging the cooling medium from the arrangement space. A medium outlet 40 of the supply flow path is provided for each laser gain medium, and the medium outlets are arranged so that the cooling medium flows from a high intensity region 44a to a low intensity region 44b of intensity distribution in an irradiation region 44 of exciting light L1 for the laser gain medium.
Abstract:
PROBLEM TO BE SOLVED: To provide a thrombus removal device, capable of detecting breakage of an optical fiber with high accuracy.SOLUTION: A thrombus removal device 1 is a device which radiates light to thrombus in a blood vessel to thereby remove the thrombus. The thrombus removal device 1 includes: a light source 11; a polarization beam splitter 12, a λ/4 plate 13; a photo detector 14; an optical fiber 15; a connector 16; an optical fiber 17; a catheter 18; and a window member 19. A reflection reducing film is formed on the end face of a second end 17b of the optical fiber 17. A reflection reducing film for reducing reflection of light when the blood contacts is formed on a second face 19b of the window member 19. The reflectance Ra in the first face 19a of the window member 19 and the reflectance Rb in the second face 19b of the window member 19 when the gas contacts the second face 19b of the window member 19 are respectively set to predetermined values.
Abstract:
PROBLEM TO BE SOLVED: To provide a zigzag slab solid-state laser amplifier which can easily and effectively compensate thermal lens effects, even when excitation intensity is high and a lens for compensation is unusable and a method for compensating thermal lens effect of zigzag slab solid-state laser. SOLUTION: In the zigzag slab solid-state amplifier 11, a hot channel 25 is arranged along both end faces of a laser medium 21, which are oriented in parallel with a plane containing a zigzag propagation path. When the amplifier 11 is operated, hot water is made to circularly flow in the channel 25 and both ed faces of the medium 21, which are oriented in parallel with the plane containing the zigzag propagation path are heated. Since the temperature gradient in the laser medium 21 in the direction perpendicular to the plane containing the zigzag propagation path is flattened, thermal lens effects are compensated.
Abstract:
PROBLEM TO BE SOLVED: To provide a rod lens, a holder for rod lens, and an LD array which can ease positional adjustment. SOLUTION: Both ends of a rod lens 2a are obliquely cut off, and wedge-like members 4aL and 4aR for positional adjustment are brought into contatc with these portions. When bolts 8aL and 8aR are tightened, the members 4aL and 4aR move toward the rod lens 2a, and the rod lens 2a moves in Y direction as a result.
Abstract:
PROBLEM TO BE SOLVED: To provide a solid-state laser apparatus wherein laser beam quality is satisfactorily prevented from degradation, and to provide a method for implementing beam quality improvement. SOLUTION: In this solid-state laser apparatus 1, a rod 2 is excited by exciting lights from LD bars 7 for the generation of a laser light in the rod 2, and the light is resonated in a resonator before it is radiated outward. The apparatus 1 comprises a plurality of optical systems 8 each collecting the light emitted by an LD bar 7 and reflected by the rod 2, an optical output measuring means 19 for measuring the lights collected by the optical systems 8, a current feeding means for feeding driving currents to the LD bars 7, a first calculating means 17 for determining the variates ΔP of the plurality of optical outputs from a reference optical output as measured by the optical output measuring means 19, a second calculating means 18 for determining the current variates ΔI based on correspondence between the variates ΔP and the current variates ΔI that zero the variates ΔP, and a controller 16 for controlling the current feeding means for the driving currents to be fed to the LD bars 7 to vary by the thus-determined current variates ΔI. COPYRIGHT: (C)2004,JPO&NCIPI