Abstract:
A photodetecting device is characterized by comprising a photodetecting section 1 having a photoelectric surface 2 for emitting photoelectrons upon incidence of light, a semiconductor detection element 3 having an electron incident surface 3a on which the photoelectrons can be incident, and a vacuum vessel in which the photoelectric surface 2 is arranged on one inner surface, and the semiconductor detection element 3 is arranged on the other inner surface opposing the one surface, and cooling means 9 for cooling a structure on the semiconductor detection element 3 side of the vacuum vessel.
Abstract:
The invention relates to a fluorescence measuring apparatus to which a CCD camera capable of measuring fluorescent components emitted from a specimen corresponding to excitation pulse components emitted at regular intervals toward the specimen is applied. The fluorescence measuring apparatus has at least a CCD and a controller. The CCD includes photoelectric converters for implementing photoelectric conversion of the fluorescent components emitted from the specimen, and charge storage elements for storing and transferring charges resulting from the photoelectric conversion by the photoelectric converters. The controller outputs an electronic shutter signal for sweeping away the charge resulting from the photoelectric conversion by each photoelectric converter, a readout signal for reading the charge resulting from the photoelectric conversion, to the charge storage element, and a transfer signal for sequentially transferring the charge thus read. In particular, the controller outputs the electronic shutter signal corresponding to generation of each excitation pulse component, outputs the readout signal corresponding to output of the electronic shutter signal, and outputs the transfer signal per predetermined number of readout signals outputted.
Abstract:
Un dispositivo de detección de rayos X, que comprende: un primer sensor de línea (32) para detectar los rayos X que se transmiten a través del objeto y que generan unos primeros datos de imágenes de rayos X; un segundo sensor de línea (42), dispuesto en paralelo al primer sensor de línea con una región de zona muerta que tiene un ancho predeterminado intercalada entre los mismos y para detectar los rayos X que se transmiten a través del objeto y que generan unos segundos datos de imágenes de rayos X, en donde el primer sensor de línea (32) detecta rayos X en un primer intervalo de energía y el segundo sensor de línea (42) detecta rayos X en un segundo intervalo de energía, siendo uno de estos intervalos de energía un intervalo de baja energía y siendo el otro un intervalo de alta energía; y una sección de control de temporización (50) para emitir unos primeros pulsos de control al primer sensor de línea (32) y para emitir unos segundos pulsos de control al segundo sensor de línea (42), caracterizado por que: el ancho predeterminado es más estrecho que un ancho de detección del primer sensor de línea y que un ancho de detección del segundo sensor de línea, y la sección de control de temporización (50) está configurada para controlar de modo que retarde la temporización de detección de al menos el segundo sensor de línea con respecto a la temporización de detección del primer sensor de línea de tal manera que los primeros datos de imágenes de rayos X y los segundos datos de imágenes de rayos X se correspondan entre sí.
Abstract:
The invention relates to a fluorescence measuring apparatus to which a CCD camera capable of measuring fluorescent components emitted from a specimen corresponding to excitation pulse components emitted at regular intervals toward the specimen is applied. The fluorescence measuring apparatus has at least a CCD and a controller. The CCD includes photoelectric converters for implementing photoelectric conversion of the fluorescent components emitted from the specimen, and charge storage elements for storing and transferring charges resulting from the photoelectric conversion by the photoelectric converters. The controller outputs an electronic shutter signal for sweeping away the charge resulting from the photoelectric conversion by each photoelectric converter, a readout signal for reading the charge resulting from the photoelectric conversion, to the charge storage element, and a transfer signal for sequentially transferring the charge thus read. In particular, the controller outputs the electronic shutter signal corresponding to generation of each excitation pulse component, outputs the readout signal corresponding to output of the electronic shutter signal, and outputs the transfer signal per predetermined number of readout signals outputted.
Abstract:
A fluorescence correlation spectroscopy analyzer 1 is equipped with an excitation light illuminating optical system 21, a fluorescence imaging optical system 22, a CCD camera 15, and a data analyzer 16. The excitation light illuminating optical system 21 illuminates excitation light onto a predetermined region of a measured sample S. The fluorescence imaging optical system 22 images the fluorescence generated at the measured sample S onto the photodetection surface of the CCD camera 15. The CCD camera 15 performs photoelectric conversion of the fluorescence made incident onto the photodetection surface in accordance with the respective pixels and outputs the charges generated by the photoelectric conversion as detection signals from an output terminal. The data analyzer 16 inputs the detection signals based on the charges generated at the pixels, among the pixels of the CCD camera 15, that belong to an analyzed pixel set and computes autocorrelation functions of the input detection signals according to each pixel. A fluorescence correlation spectroscopy analyzer, which is enabled to perform fluorescence correlation spectroscopy analysis on multiple points of a measured sample simultaneously and at high speed, is thus provided.
Abstract:
A photodetecting device is characterized by comprising a photodetecting section 1 having a photoelectric surface 2 for emitting photoelectrons upon incidence of light, a semiconductor detection element 3 having an electron incident surface 3a on which the photoelectrons can be incident, and a vacuum vessel in which the photoelectric surface 2 is arranged on one inner surface, and the semiconductor detection element 3 is arranged on the other inner surface opposing the one surface, and cooling means 9 for cooling a structure on the semiconductor detection element 3 side of the vacuum vessel.
Abstract:
A photodetecting device is characterized by comprising a photodetecting section 1 having a photoelectric surface 2 for emitting photoelectrons upon incidence of light, a semiconductor detection element 3 having an electron incident surface 3a on which the photoelectrons can be incident, and a vacuum vessel in which the photoelectric surface 2 is arranged on one inner surface, and the semiconductor detection element 3 is arranged on the other inner surface opposing the one surface, and cooling means 9 for cooling a structure on the semiconductor detection element 3 side of the vacuum vessel.
Abstract:
A radiation image acquiring system that improves the detection accuracy of a foreign substance etc., in a subject is provided. An X-ray image acquiring system 1 irradiates X-rays to a subject S from an X-ray source, and detects X-rays in a plurality of energy ranges transmitted through the subject S. The X-ray image acquiring system 1 includes a low-energy detector 32 for detecting X-rays in a low-energy range that is transmitted through the subject S to generate low-energy image data, a high-energy detector 42 arranged in parallel to the low-energy detector 32 with a dead zone region 82 sandwiched therebetween, for detecting X-rays in a high-energy range that is transmitted through the subject S to generate high-energy image data, and a timing control section 50 for controlling detection timing of the high-energy detector 42 based on a dead zone width NW of the dead zone region 82 so that low-energy image data to be generated by the low-energy detector 32 and high-energy image data to be generated by the high-energy detector 42 mutually correspond.