Abstract:
Articles and methods for forming nanostructures having unique and/or predetermined shapes are provided. The methods and articles may involve the use of nucleic acid containers as structural molds. For instance, a pre-designed nucleic acid container including a cavity may be used to control the shape- specific growth of nanoparticles. Growth of the nanoparticles within the cavities may be confined by the specific shape of the nucleic acid container. In some embodiments, the resulting nucleic acid-nanoparticle structures can be used to control the orientation and numbers of surface ligands on the surface of nanoparticles. The addressability of the surface ligands can be used to form higher ordered assemblies of the structures.
Abstract:
The present disclosure relates, in some embodiments, to the use of nucleic acid structures (e.g., nanostructures and/or microstructures) in energy applications.
Abstract:
The present disclosure relates to the alignment of moieties (e.g., nanoparticles and/or nanowires) into prescribed architectures on two- and/or three-dimensional substrates (e.g., nucleic acid nanostructures/crystals). The present disclosure also relates to a nucleic acid (e.g., DNA) lithography method that includes, in some embodiments, adsorbing a bare nucleic acid nanostructure onto a surface of a substrate, and etching the surface of the substrate containing the bare nucleic acid nanostructure, thereby producing a patterned substrate.
Abstract:
The present disclosure relates to the alignment of moieties (e.g., nanoparticles and/or nanowires) into prescribed architectures on two- and/or three-dimensional substrates (e.g., nucleic acid nanostructures/crystals). The present disclosure also relates to a nucleic acid (e.g., DNA) lithography method that includes, in some embodiments, adsorbing a bare nucleic acid nanostructure onto a surface of a substrate, and etching the surface of the substrate containing the bare nucleic acid nanostructure, thereby producing a patterned substrate.
Abstract:
Articles and methods for forming nanostructures having unique and/or predetermined shapes are provided. The methods and articles may involve the use of nucleic acid containers as structural molds. For instance, a pre-designed nucleic acid container including a cavity may be used to control the shape-specific growth of nanoparticles. Growth of the nanoparticles within the cavities may be confined by the specific shape of the nucleic acid container. In some embodiments, the resulting nucleic acid-nanoparticle structures can be used to control the orientation and numbers of surface ligands on the surface of nanoparticles. The addressability of the surface ligands can be used to form higher ordered assemblies of the structures.
Abstract:
The present disclosure relates to the alignment of moieties (e.g., nanoparticles and/or nanowires) into prescribed architectures on two- and/or three-dimensional substrates (e.g., nucleic acid nanostructures/crystals). The present disclosure also relates to a nucleic acid (e.g., DNA) lithography method that includes, in some embodiments, adsorbing a bare nucleic acid nanostructure onto a surface of a substrate, and etching the surface of the substrate containing the bare nucleic acid nanostructure, thereby producing a patterned substrate.
Abstract:
The invention provides compositions and methods relating to self-assembly of structures of various size and shape complexity. The composition include synthetic single-stranded polymers having a backbone and pre-determined linear arrangement of monomers.