Abstract:
In one embodiment, an aircraft for transporting at least one cargo container is disclosed. The aircraft comprises a forward fuselage, an empennage, a beam structure, and mounts to detachably and structurally engage the at least one cargo container with the beam structure. The beam structure is disposed between the forward fuselage and the empennage and the beam structure configured to receive the at least one cargo container. The beam structure and structurally engaged cargo container provide sufficient structural rigidity to support the aircraft in flight.
Abstract:
In one embodiment, an aircraft for transporting at least one cargo container is disclosed. The aircraft comprises a forward fuselage, an empennage, a beam structure, and mounts to detachably and structurally engage the at least one cargo container with the beam structure. The beam structure is disposed between the forward fuselage and the empennage and the beam structure configured to receive the at least one cargo container. The beam structure and structurally engaged cargo container provide sufficient structural rigidity to support the aircraft in flight.
Abstract:
An aircraft for carrying at least one rigid cargo container includes a beam structure with a forward fuselage attached to the forward end of the beam structure and an empennage attached to the rearward end of the beam structure. Wings and engines are mounted relative to the beam structure and a fairing creates a cargo bay able to receive standard sized intermodal cargo containers. Intermodal cargo containers of light construction and rigid structure are positioned within the cargo bay and securely mounted therein. The beam structure is designed to support flight, takeoffs and landings when the aircraft is empty but requires the added strength of the containers securely mounted to the beam structure when the aircraft is loaded. The aircraft is contemplated to be a drone.
Abstract:
An aircraft for transporting a plurality of cargo containers comprising a forward fairing, an empennage and a spine disposed between the forward fairing and the empennage. The spine is made of a lightweight structure such that the aircraft has insufficient rigidity to withstand bending and tortional loads in flight. A cargo assembly comprising a plurality of modular cargo units is structurally and detachably mounted onto the spine to provide the additional structure to the aircraft required for it to fully withstand the bending and tortional loads of the aircraft in flight. Mounts may be provided to detachably engage the cargo assembly to the spine of the aircraft.
Abstract:
Un método de consumo eficiente del combustible de transportación de carga a una ubicación deseada por medio de una aeronave; el método comprende determinar el peso de la carga con la capacidad de ser transportada en un contenedor único, seleccionar un contenedor que tiene una capacidad de carga suficiente para soportar la carga con base en el peso determinado de la carga, y llenar el contenedor seleccionado con la carga; el contenedor lleno es cargado en una ubicación sobre el eje de la aeronave en relación con el CG de la aeronave con base en el peso del contenedor lleno para permanecer dentro del intervalo CG aceptable para la aeronave; los contenedores llenos que tienen mayor peso son colocados sobre el eje en o adyacente al CG de la aeronave y los contenedores llenos que tienen menor peso son colocados más lejos del CG de la aeronave; los contenedores proporcionan la fuerza y rigidez al eje para sostener las cargas de flexión y torsión durante el vuelo.
Abstract:
One embodiment of the present invention provides a novel packaging article, which includes a cover and a base having non-edge localized connecting structures, such as, a protrusion and a receptacle cavity. The cover and the base may have different thermal expansion coefficients such that, when subject to heating (e.g., microwave heating) or cooling (e.g., refrigerate storage), the cover and the base do not expand or shrink to the same degree. Furthermore, the cover and/or the base may comprise a biodegradable or edible material, such as, without limitation, starch.
Abstract:
In one embodiment of the invention a mold system and method of use are provided such that aqueous starch-based compositions and baked goods articles that use the conversion of water to steam may be produced using an extruder that allows the venting of such gases and/or steam. The extruder is vented in such a way as to allow steam to escape, but retain the composition until the exit end.
Abstract:
The present invention relates to a composition for use in making a starch-based food or beverage container, the formulation allowing the container to be water resistant for a usable amount of time without the need for coatings or similar. An embodiment of the formulation comprising water, native and pregelatinized starch, an insolubilizing compound, proteins or natural polymeric compounds, fibers, a wax emulsion, and a fiber-sizing agent.
Abstract:
A system for loading and unloading a cargo assembly onto and from an aircraft. The system comprises an aircraft and a moveable platform. The aircraft comprises a forward fairing, an aft fairing, a spine disposed between the forward fairing and the aft fairing and a plurality of mounts coupled to the spine and configured to structurally engage the cargo container onto the spine. The aft fairing is movable between a fixed position for flight and an open position for at least loading and unloading of the cargo assembly. The aircraft is configured such that an unobstructed passageway is provided in an area underneath the spine during loading or unloading of the cargo assembly. An aft access is provided when the aft fairing is moved to the open position. The moveable platform is used to maneuver the cargo assembly for loading and unloading onto and from the spine, respectively.