Abstract:
Examples of the present disclosure relate to an additive manufacturing system. The system comprises a build material supply mechanism to deposit build material on a build surface. The system comprises a pre-heating system to apply globally pre-heating energy to pre-heat an upper layer of the deposited build material to a temperature below a fusing temperature of the build material. The system comprises a fusing system to selectively fuse deposited build material by locally heating the build material above the fusing temperature. The pre-heating system is to vary over time a spatial distribution of the applied pre-heating energy.
Abstract:
Examples of temperature measurement calibration in an additive manufacturing system are described. In one case, a method of calibrating a non-contact temperature measurement device involves applying energy from a radiation source of the additive manufacturing system to heat a reference element. The reference element is thermally coupled to a temperature sensor. A temperature reading from the temperature sensor is compared with data from the non-contact temperature measurement device to calibrate the device.
Abstract:
In some examples, a lamp assembly of a printing system includes a heating lamp to generate heat energy during an operation of the printing system, a sensor, and a first housing defining a sensor chamber in which the sensor is located, the first housing defining an airflow inlet to receive a cooling airflow to cool the sensor, and an exhaust outlet through which a heated exhaust airflow is to exit from the sensor chamber.
Abstract:
In one example of the disclosure, a system for limitation of energy wavelengths applied during 3D printing includes an energy source to provide energy to a target zone during a 3D printing operation. The system includes a filter chamber through which the energy is to pass before arriving at the target zone. The system includes a filter chamber control component to selectively modify the contents of the filter chamber to limit the wavelengths of energy that can pass through the filter chamber based upon type of the target zone.
Abstract:
In some examples, a lamp assembly for a printing system includes a heating lamp to generate heat in an active region of the printing system, and a housing comprising an inner chamber containing the heating lamp, an airflow inlet to receive a cooling airflow for provision into the inner chamber of the housing to cool the heating lamp, and a plurality of exhaust holes through which heated exhaust air is to exit from the inner chamber of the housing, the plurality of exhaust holes formed in a wall of the housing. The lamp assembly further includes an attachment element to attach the lamp assembly to a carriage of the printing system.
Abstract:
A transport device (106) includes a first volume (110) to receive a build material and a second volume (108) to contain an object created by an additive manufacturing system (100). The transport device (106) is receivable by a 3D printer (102) of the additive manufacturing system, and the 3D printer to build the object in the second volume. The transport device (106) is receivable by an extracting and supply device (104). The extracting and supply device is to extract the object from the second volume and to supply the build material to the first volume.
Abstract:
In an example implementation, a first fusing lamp of a fusion assembly in a 3-dimensional printer is illuminated during a number of processing cycles for generating a 3D object, and a second fusing lamp of the fusion assembly is illuminated during a subsequent number of processing cycles for generating the 3D object.
Abstract:
An apparatus for generating a three-dimensional object is provided. The apparatus may include a housing having a surface defining a build receiver to receive differently-sized build modules or to receive a plurality of build modules. The build modules may each include a build chamber to receive a layer of build material from a build material distributor. The apparatus may include an agent distributor to selectively deliver a coalescing agent onto portions of the layer of build material to be received from the build material distributor such that when energy is applied to the layer the portions of the layer coalesce and solidify to form a slice of the three-dimensional object.
Abstract:
There is disclosed additive manufacturing apparatus (10), (22), (34) comprising: a heater (18), (36) to direct radiant heat onto an irradiation region (20) of a build platform (12), at least part of the heater (18), (36) being moveable to cause the irradiation region (20) to traverse over the build platform (12); a coating module (14) moveable relative the heater (18), (36) to traverse the build platform (12) to apply a build material onto the build platform (12); and a print module (16) moveable relative the heater (18), (36) to traverse the build platform (12) to selectively eject a print agent onto the build material.
Abstract:
In example implementations, an apparatus includes a storage unit, an auger screw, a housing enclosing the auger screw and at least one heater coupled to the housing. The augers screw receives a build material from the storage unit and delivers the build material to a build platform via movement of the auger screw. The build material is heated by the at least one heater as the build material is being moved by the auger screw.