Abstract:
A system for passive optical alignment includes an through optical via (208) formed through a substrate (206), an optical transmission medium (216) secured to a first side of the substrate (206) such that the optical transmission medium (216) is aligned with the through optical via (208), and an optoelectronic component (212) secured to a second side of the substrate (206) such that the active region (210) of said optoelectronic component (212) is aligned with the through optical via (208).
Abstract:
A high contrast grating optical modulation includes an optical modulator at a front surface of a substrate to modulate received light. The high contrast grating optical modulation further includes a high contrast grating (HCG) lens adjacent to a back surface of the substrate opposite to the front surface to focus incident light onto the optical modulator. The substrate is transparent to operational wavelengths of the focused incident light and the modulated light.
Abstract:
Bidirectional optical multiplexing employs a high contrast grating as one or both of a beam-forming lens and a relay mirror. A bidirectional optical multiplexer includes the beam-forming lens to focus light. The light is one or both of a light beam internal to and another light beam external to the bidirectional optical multiplexer. The bidirectional optical multiplexer further includes an optical filter and the relay mirror. The optical filter is to selectively pass a portion of the internal light beam at a first wavelength and to reflect portions of the internal light beam at other wavelengths. The relay mirror is to reflect the internal light beam along a zigzag propagation path between the optical filter and the relay mirror.
Abstract:
An apparatus (2) can comprise an optical slab (4) comprising a rigid substrate of substantially transmissive material. The apparatus (2) can also comprise a WDM multiplexer (6) to receive and combine a plurality of optical signals (14, 16 and 20) at different wavelengths to form a combined optical signal (24) in the optical slab (4) having an aggregate power. The apparatus can further comprise a broadcaster (28) to distribute the combined optical signal (24) from the optical slab (4) to each of a plurality of different optical receivers (30, 32 and 34) with a fraction of the aggregate power of the combined optical signal (24).
Abstract:
A high contrast grating optoelectronic apparatus includes an optoelectronic device at a front surface of a substrate. The optoelectronic device is to one or both of emit light and detect light through a back surface of the substrate opposite the front surface. A high contrast grating (HCG) lens is adjacent to and spaced apart from the back surface of the substrate by a spacer. The spacer includes one or both of a wafer-bonded substrate and a cavity. The HCG lens is to focus the light.
Abstract:
An optical interconnect (200) includes: a reflective body (230) having a first reflective surface (235) and a second reflective surface (240) opposite the first reflective surface (235); a first optical waveguide (205) that directs a first optical signal received from a first communicating device (105) to the first reflective surface (235); a second optical waveguide (210) that directs the first optical signal from the first reflective surface (235) of the reflective body (230) to a second communicating device (110); a third optical waveguide (215) that directs a second optical signal received from the second communicating device (110) to the second reflective surface (240) of the reflective body (230); and a fourth optical waveguide (220) that directs the second optical signal from the second reflective surface (240) of the reflective body (230) to the first communicating device (105).
Abstract:
An optical transmission system includes a lens wafer to couple light into an optical transmission medium. The lens wafer includes a set of collimating lenses on a first side of the lens wafer, the collimating lenses to collimate beams of light from a plurality of light sources. The lens wafer also includes a focusing element on a second side of the wafer opposing the first side. The focusing element is to focus the collimated beams of light into an optical transmission medium.
Abstract:
In one implementation, a cable harness switch includes a plurality of input ports, a first plurality of output ports, a second plurality of input ports, and a circuit switch module. Each input port from the plurality of input ports is configured to be coupled to a network link. Each output port from the first plurality of output ports is configured to be coupled to a network link. Each output port from the second plurality of output ports configured to be coupled to a network switch device. The circuit switch module is operatively coupled to the plurality of input ports, the first plurality of output ports, and the second plurality of output ports to define a network circuit including an input port from the plurality of input ports and an output port from the first plurality of output ports and the second plurality of output ports.
Abstract:
A small-mode-volume, vertical-cavity, surface-emitting laser (VCSEL) (101). The VCSEL (101) includes an active structure (102) to emit light (118) upon injection of carriers, and two reflecting structures (103) at least one of which is a grating reflector structure (112). The active structure (102) is disposed within at least one of the reflecting structures (103). The reflecting structures (103) are configured as a vertical-cavity resonator of small mode-volume. An optical-bus transmitter (601) including a plurality (610) of small-mode-volume VCSELs, and a system (605) including at least one optical bus (650) and at least one optical-bus transmitter (601) in a digital-information processor (607), or a data-processing center (609), are also provided.
Abstract:
A method for constructing an area array waveguide power splitter includes preparing a reflective layer on a substrate and forming a core of an area array waveguide layer and alignment features for an optical fiber input and a plurality of optical fiber outputs atop the reflective layer, wherein the core of the area array waveguide layer and the alignment features are formed concurrently. The method also includes applying a reflective layer to the top and side surfaces of the core of the area array waveguide layer and exposing an input and exposing a plurality of outputs in the reflective layer.