Abstract:
6-Methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is prepared by cylcizing acetoacetamide-N-sulfonic acid or its salts with an at least approximately equimolar amount of SO3 in the presence of a water-immiscible, inert organic solvent and, if appropriate, also an inert, inorganic solvent. In the event that an equimolar amount of SO3 is employed, working up is effected by adding aqueous sulfuric acid when the cyclization reaction is complete; in the event that the amount of SO3 employed is more than equimolar, the 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide obtained in the form of the SO3-adduct is hydrolyzed by adding water or ice, whereby sulfuric acid is formed from the SO3 combined in the SO3-adduct. The inert, organic solvent is then removed from the resulting multi-phase mixture by distillation, and the 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is obtained in a pure form from the remaining aqueous sulfuric acid phase by crystallization. Additionally, quite generally, crude 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is purified by recrystallization from aqueous sulfuric acid. The non-toxic salts of 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2 dioxide-in particular the potassium salt-are valuable synthetic sweetening agents.
Abstract:
Crystalline salts of acetoacetamide-N-sulfofluoride are prepared by reacting amidosulfofluoride H2NSO2F with diketene in the presence of inorganic bases, preferably alkali metal carbonates and/or hydrogencarbonates, in particular potassium carbonate, in an inert organic solvent. The salts can be further processed with further base, for example with methanolic KOH, into salts of 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one-2,2-dioxide; the potassium salt, in particular, is important for use as a sweetener ("Acesulfame").
Abstract:
6-Methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is prepared by reaction of acetoacetamide with at least approximately twice the molar amount of SO3 per mole of acetoacetamide, if appropriate in an inert inorganic or organic solvent. Relevant salts can be obtained, using bases, from the product which results in the form of the acid. The non-toxic salts, in particular the potassium salt, are valuable synthetic sweeteners.
Abstract:
6-Methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is prepared by (a) reacting, in an inert organic solvent, a salt of sulfamic acid, which is at least partially soluble therein, with at least approximately the equimolar amount of an acetoacetylating agent, in the presence of an amine or phosphine catalyst, and by cyclizing the acetoacetamide-N-sulfonate which is formed in this reaction, or the free sulfonic acid, (b) by the action of at least approximately the equimolar amount of SO3, where appropriate in an inert inorganic or organic solvent, to give 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide, which is produced in the form of the acid in this reaction; it is possible, if desired, to obtain from the acid form (c) the appropriate salts by neutralization with bases. The non-toxic salts - in particular the potassium salt - are valuable synthetic sweeteners.
Abstract:
6-Methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is prepared by (a) reacting, in an inert organic solvent, a salt of sulfamic acid, which is at least partially soluble therein, with at least approximately the equimolar amount of an acetoacetylating agent, in the presence of an amine or phosphine catalyst, and by cyclizing the acetoacetamide-N-sulfonate which is formed in this reaction, or the free sulfonic acid, (b) by the action of at least approximately the equimolar amount of SO3, where appropriate in an inert inorganic or organic solvent, to give 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide, which is produced in the form of the acid in this reaction; it is possible, if desired, to obtain from the acid form (c) the appropriate salts by neutralization with bases. The non-toxic salts - in particular the potassium salt - are valuable synthetic sweeteners.
Abstract:
of the disclosure: 6-Methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is prepared by cyclizing acetoacetamide-N-sulfonic acid or its salts with an at least approximately equimolar amount of SO3 in the presence of a water-immiscible, inert organic solvent and, if appropriate, also an inert, inorganic solvent. In the event that an equimolar amount of SO3 is employed, working up is effected by adding aqueous sulfuric acid when the cyclization reaction is complete; in the event that the amount of SO3 employed is more than equimolar the 6-methyl-3,4-dihydro-1,2,3-oxa-thiazin-4-one 2,2-dioxide obtained in the form of the SO3-adduct is hydrolyzed by adding water or ice, whereby sulfuric acid is formed from the SO3 combined in the SO3adduct. The inert, organic solvent is then removed from the resulting multi-phase mixture by distillation, and the 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is obtained in a pure form from the remaining aqueous sulfuric acid phase by crystallization. Additionally, quite generally, crude 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide is purified by recrystallization from aqueous sulfuric acid. The non-toxic salts of 6-methyl-3,4-dihydro-1,2,3-oxa-thiazin-4-one 2,2-dioxide - in particular the potassium salt - are valuable synthetic sweetening agents.