Abstract:
The present teachings provide a system for modifying insulin therapy support parameters such as warning limit data and time block data on a hand-held diabetes management device. The system can include a graphical user interface module that creates a graphical user interface having a plurality of bar structures positionable on or between a first line that indicates an upper limit and a second line that illustrates a lower limit. Each of the bar structures can have a first side that indicates a start time of a time window opposite a second side that indicates an end time of the time window and a third side that indicates a lower target value for a blood glucose level opposite a fourth side that indicates an upper target value for the blood glucose level. The bar structures, the first line and the second line can be adjustable by a user input.
Abstract:
A diabetes management system having a reliable data management scheme is disclosed. The system comprises a plurality of devices, each device performing a different function relating to treatment of diabetes. Each device has a device identifier and each device generates data records relating to the function of the device. Each device includes a metadata generator configured to generate a metadata tag for a data record generated by the device. A metadata tag includes the device identifier of the corresponding device, a record identifier, and a source identifier indicating whether the record was originated by a human or the device. The system further includes a diabetes management device in communication with the plurality of devices and configured to manage records received from the plurality of devices. When a first device of the plurality of devices generates a new record to be communicated to the diabetes management device, the metadata generator of the first device generates a new unique record identifier and a new metadata tag based on the new unique record identifier and the device identifier of the first device, and the first device propagates the new record and the new metadata tag to the second device.
Abstract:
A diabetes management system having a reliable data management scheme is disclosed. The system comprises a plurality of devices, each device performing a different function relating to treatment of diabetes. Each device has a device identifier and each device generates data records relating to the function of the device. Each device includes a metadata generator configured to generate a metadata tag for a data record generated by the device. A metadata tag includes the device identifier of the corresponding device, a record identifier, and a source identifier indicating whether the record was originated by a human or the device. The system further includes a diabetes management device in communication with the plurality of devices and configured to manage records received from the plurality of devices. When a first device of the plurality of devices generates a new record to be communicated to the diabetes management device, the metadata generator of the first device generates a new unique record identifier and a new metadata tag based on the new unique record identifier and the device identifier of the first device, and the first device propagates the new record and the new metadata tag to the second device.
Abstract:
A system for determining drug administration information may comprise an input device providing for user input of feed forward information having a first parameter component and a second parameter component, a data storage device and a processor. The data storage de-vice may have stored therein a map correlating values of the first and second parameters to drug administration information. The processor may be responsive to user input of the feed forward information to determine corresponding drug administration information according to the map.
Abstract:
A computer-implemented method is presented for synchronizing time between two handheld medical devices that interoperate with each other. The method includes: determining a first time as measured by a first clock residing in the first medical device; determining a second time as measured by a second clock residing in a second medical device; evaluating whether the first clock is synchronized with the second clock; determining whether at least one of the first clock and the second clock was set manually by a user; and setting time of the first clock in accordance with the second time when the second clock was set manually by the user.
Abstract:
A diabetes treatment system that includes an insulin pump and a remote pump controlling device is disclosed. The remote controller, upon receiving a request (68) for the pump to perform an operation such as starting particular insulin delivery scheme, queries (70) the pump for its current state (e.g. running, suspended, stopped delivery) and determines (73) whether the current state of the pump matches the required state for performing (76) the requested operation.
Abstract:
The present disclosure describes a handheld diabetes management device that implements a failsafe firmware upgrading protocol to reduce required user interaction and risk of device downtime. The general processing module executes first software from nonvolatile memory. The general processing module receives second software from an external port and writes the second software to the nonvolatile memory. Based on an upgrade signal, the general processing module switches execution from the first software to the second software, evaluates proper operation of the general processing module, and switches execution back to the first software from the second software when proper operation of the general processing module using the second software is not detected. A communications module, in electrical communication with the general processing module, stores third software and executes the third software. The general processing module receives fourth software from the external port and replaces the third software with the fourth software.