Abstract:
A.thermal fluid flow sensor and method of forming same. The flow sensor has an integrated circuit substrate (2), such as a silicon substrate, and a region (6) of low thermal conductivity material carried on the top surface (3) of the integrated circuit substrate. One or more pairs of temperature sensing elements (4,5) are disposed. on the low thermal, conductivity region together with a heating element (11) so that a robust flow sensor can be provided at low cost. Signal conditioning circuitry (10) is disposed on the same surface as the temperature sensing elements and connected to the sensing elements thereby further reducing costs and improving the flow sensor sensitivity.
Abstract:
A system relating to sample analyzers, and more particular, to sample analyzers that are simple to operate and have a reduced risk of providing an erroneous result to a user. In some cases, the sample analyzer may be a portable sample analyzer that includes a disposable fluidic cartridge. The operators of the analyzers need not be trained.
Abstract:
A microfluidic circuit cartridge for a complete blood count, including analyses of red blood cells. Various parameters of the red blood cells may be attained. The cartridge may have sphering mechanism which has a channel or loop with a configuration for reducing or eliminating cell settling. The channel or loop may incorporate a combination of straight and curve paths in the context of gravity. The channel may alternatively have a hydrophilic or hydrophobic inside surface. Again alternatively, the channel may have an electro-wettable inside surface. Or, the channel may be subject to an electric or magnetic field. There may also be a mechanism for reducing or eliminating clumping of a sample.
Abstract:
The present invention is directed towards receiving removable media, and in some embodiments, providing tighter alignment tolerances between an inserted removable media member and a receiving device. The present invention is also directed towards providing one or more electrical or optical device on or in the removable media member itself, and for providing an electrical and/or optical link between the one or more electrical and/or optical devices on or in the removable media and the receiving device.
Abstract:
An assay implementation in a microfluidic format in a cartridge relating to a point-of-care instrument platform for monitoring and diagnosing infectious diseases (e.g., AIDS and malaria). The platform may also provide a complete blood count. The instrument platform may hold the cartridge and a portion of an optical system for fluorescent and scattered light related analyses of blood sample in a flow channel of the cartridge.
Abstract:
A system relating to sample analyzers, and more particular, to sample analyzers that are simple to operate and have a reduced risk of providing an erroneous result to a user. In some cases, the sample analyzer may be a portable sample analyzer that includes a disposable ftuidic cartridge. The operators of the analyzers need not be trained.
Abstract:
A sample analyzer with a removable and/or disposable cartridge for use at the point of care of a patient such as in a doctor's office, in the home, or elsewhere in the field. By providing a removable and/or disposable cartridge with all of the needed reagents and/or fluids, the sample analyzer can be reliably used outside of the laboratory environment, with little or no specialized training. One or more white blood cell parameters are measured in a first flow channel, one or more red blood cell parameters are measured in a second flow channel.
Abstract:
A flow sensor is provided having a substrate with a sensing element (2070) and flow channel (2040) aligned over the sensing element. The sensing element senses at least one property of a fluid. The flow channel is aligned by one or more guide elements (2030) formed in an alignment layer. The flow channel across the sensing area is accurately and precisely aligned due to the guide elements provided at the wafer-level, facilitating reliable, low-cost, and consistent results among multiple flow sensors. The flow sensor is adapted for use in harsh environments.
Abstract:
A sensor network provides the ability to detect, classify and identify a diverse range of agents over a large area, such as a geographical region or building. The network possesses speed of detection, sensitivity, and specificity for the diverse range of agents. Different functional level types of sensors are employed in the network to perform early warning, broadband detection and highly specific and sensitive detection. A high probability of detection with low probability of false alarm is provided by the processing of information provided from multiple sensors. A Bayesian net is utilized to combine probabilities from the multiple sensors in the network to reach a decision regarding the presence or absence of a threat. The network is field portable and capable of autonomous operation. It also is capable of providing automated output decisions.
Abstract:
A portable or wearable cytometer (10) that can be used at remote locations, such as in the field or at home. The flow cytometer (10) of the present invention may help improve the healthcare of many weak, sick or elderly people by providing early detection of infection. By detecting the infection early, the infection may be more readily treatable. In military applications, the portable cytometer (10) of the present invention may help save lives by providing early detection of infection due to biological agents.