Abstract:
The present invention relates, in part, to heat transfer compositions and methods that include (a) from about 65% to about 75% by weight of HFC-32; (b) from about 15% to about 35% by weight of a compound selected from unsaturated —CF3 terminated propenes, unsaturated —CF3 terminated butenes, and combinations of these; and (c) from greater than about 0% to less than about 10% by weight of CO2, provided that the amount of component (c) is effective to improve heating capacity of the composition and reduce the defrost cycle in refrigerant applications, as compared to compositions lacking this component.
Abstract:
The present invention relates to a refrigerant composition, including difluoromethane (HFC- 32), pentafluoroethane (HFC-125), and trifluoroiodomethane (CF
Abstract:
The present invention relates to a refrigerant composition, including difluoromethane (HFC-32), pentafluoroethane (HFC-125), and trifluoroiodomethane (CF 3 l) for use in a heat exchange system, including air conditioning and refrigeration applications and in particular aspects to the use of such compositions as a replacement of the refrigerant R-410A for heating and cooling applications and to retrofitting heat exchange systems, including systems designed for use with R-410A.
Abstract:
The present invention relates, in part, to heat transfer and refrigerant compositions and methods that include HFC-32; HFO-1234ze and HFC-125.
Abstract:
Disclosed are methods for providing heating and/or cooling of the type comprising evaporating refrigerant liquid and condensing refrigerant vapor in a plurality of repeating cycles, where the method comprises (a) providing the refrigerant comprising at least about 5% by weight of a lower alkyl iodofluorocarbon; and (b) exposing at least a portion of said refrigerant in at least a portion of said plurality of said cycles to a sequestration material comprising: i) copper or a copper alloy; ii) a molecular sieve (preferably a zeolite), comprising copper, silver, lead or a combination thereof; iii) an anion exchange resin, and iv) a combination of two or more of these, wherein said exposing temperature is preferably above about 20C.
Abstract:
The present invention relates to a refrigerant composition, including difluoromethane (HFC- 32), pentafluoroethane (HFC-125), and trifluoroiodomethane (CF3I) for use in a heat exchange system, including air conditioning and refrigeration applications and in particular aspects to the use of such compositions as a replacement of the refrigerant R-410A for heating and cooling applications and to retrofitting heat exchange systems, including systems designed for use with R-410A.
Abstract:
Disclosed are cascaded refrigeration systems, comprising: a plurality of refrigeration units, each refrigeration unit containing a first refrigeration circuit, each first refrigeration circuit comprising an evaporator and a heat exchanger; and a second refrigeration circuit; wherein each first circuit heat exchanger is arranged to transfer heat energy between its respective first refrigeration circuit and the second refrigeration circuit.
Abstract:
Disclosed are refrigerants comprising at least about 97% by weight of a blend of three compounds, said blend consisting of: from about 40% by weight to about 49% by weight difluoromethane (HFC-32), from about 6% by weight to about 12% by weight pentafluoroethane (HFC-125), from about 33% by weight to about 40% by weight trifluoroiodomethane (CF3I); and from about 2% by weight to about 12% by weight of trans 1,3,3,3-tetrafluoropropene (trans HFO-1234ze), wherein the percentages are based on the total weight of the three compounds in the blend, and systems and method using same.