Abstract:
A flare gas actuated velocity seal and method of use thereof. The velocity seal is actuated by increases and/or decreases in the pressure of a flare gas flow in a flare stack. The velocity seal is positioned upstream of a burner tip within the gas flow through the stack. The flare gas actuated velocity seal and method of use provide a back-pressure to the flare gas flow that is generally constant in proportion to the pressure of the gas flow preventing air from flowing into the stack even at very low rates.
Abstract:
A method of optimizing steam methane reforming in a multiple cell, down-fired furnace. The method includes the steps of introducing hydrocarbons and steam to a plurality of catalyst filled process tubes, combusting gases through a plurality of center cell down-fired burners at a burner discharge velocity of V m/s, and a mass flow rate of 1 kg/s, combusting gases through outer cell down-fired burners at a burner discharge velocity of 1.5V - 2V m/s and a mass flow rate of 0.5 - 0.65 kg/s, and finally discharging combustion products from the outer cell down-fired burners and the center cell down-fired burners at a substantially uniform momentum.
Abstract translation:一种优化多池,下燃炉中蒸汽甲烷重整的方法。 该方法包括以下步骤:将碳氢化合物和蒸汽引入到多个催化剂填充的处理管中,通过多个中心单元向下燃烧的燃烧器以V m / s的燃烧器排出速度和1kg的质量流量燃烧气体 / s,以1.5V-2V m / s的燃烧器排出速度和0.5-0.66kg / s的质量流量通过外部单元向下燃烧的燃烧器燃烧气体,并且最终从外部单元向下燃烧的燃烧产物 燃烧器和中心单元向下燃烧的燃烧器具有基本均匀的动量。
Abstract:
A radiant wall burner apparatus. The apparatus includes an inlet and primary fuel tip for introduction of fuel gas and air mixing in a mixing chamber. The fuel and air mixture are subject to a substantially uniform flow area from the point of discharge from a downstream portion of the mixing chamber up to the exit gap of the burner tip. The fuel gas and combustion air mixture terminate through the burner tip at a substantially uniform velocity. The radiant wall burner apparatus and burner tip allow for the substantially uniform velocity of the fuel gas and air mixture, reducing the potential for flashback of the burner tip.
Abstract:
Methods, systems, and computer-readable and executable instructions are described herein. One method includes combining a plurality of images of a furnace into a composite image of the furnace, revising the composite image of the furnace to an intensity scaling, restoring a portion of the revised composite image of the furnace; and displaying a view of the restored revised composite image of the furnace to a user.
Abstract:
An enclosed flare stack having expanded air entries for flaring waste gas. The flare stack includes an enclosure assembly having a bottom portion with expanded air entries and an upper portion through which the flared waste gas escapes. The enlarged air entries at the bottom end of the stack to reduce entry pressure loss and to increase entrained air flow when flaring waste gas. The enclosed flare stack and method of flaring waste gas also greatly reduce the height of the stack enclosure without greatly increasing the size of the flare windows.
Abstract:
Methods and systems for monitoring a flare burner with a camera. The methods and systems which may indicate to operators the presence or absence of one or more of smoke, flare flame, and steam plume and record those indications or measurements. Additionally, the methods and systems may confirm whether compliance with local regulations on visual emissions, smoke plume is achieved. The methods and systems automatically adjust the delivery rate of key inputs including measures assist fuel gas, purge gas, steam and/or air simultaneously to maintain or attain compliance with said local regulatory requirements. Also, methods for a machine learning process for using controller inputs to identify normal and abnormal flare states and provide visual indications and flare operation recommendations.
Abstract:
Methods, systems, and computer-readable and executable instructions are described herein. One method includes dividing an enclosure into a number of first field elements and a number of second field elements, determining radiance of a number of first imaging elements and a number of second imaging elements of the enclosure using images of the enclosure, estimating a radiance field and converged parameters of the number of first field elements of the enclosure using initialized parameters of the number of first field elements and the determined radiance of the number of first imaging elements, and estimating a radiance field and converged parameters of a number of second field elements of an enclosure using converged parameters of the number of first field elements, the estimated radiance of the number of first field elements, and the determined radiance of the number of second imaging elements.
Abstract:
Process for measuring emission for a flame in an open combustion environment. A captured image is received from each of a plurality of image capturing devices in at least one selected spectral band. Each of the plurality of image capturing devices is trained on the flame from the combustion process from a different perspective view angle. A spectral path length of the flame in the at least one spectral band is estimated from the captured images. Emitted radiance of the flame is estimated from the captured images, and a temperature of the flame is estimated from the estimated emitted radiance. A gas species concentration of the flame is estimated from the temperature of the flame and the spectral path length of the flame. Emission for the flame is measured from the gas species concentration.
Abstract:
A thermal radiation shield and combustion air controlled enclosure assembly for a ground flare or flares. The assembly encloses a ground flare or flares and includes a plurality of structural supports at an obtuse angle to grade. Panels extend between the structural supports surrounding the ground flare wherein the panels are at an obtuse angle to grade.
Abstract:
A burner flame detection and monitoring system for a pilot burner for combustion of wastes gases and waste materials. The system includes a pilot burner assembly. A gas premix burner assembly includes a fuel gas delivery conduit, a fuel metering orifice, a fuel and air mixing device, a pilot tube and a pilot burner tip assembly. A primary sensor is in communication with the pilot burner assembly downstream of the fuel metering orifice. A secondary sensor is in communication with pilot burner assembly at or upstream of the fuel metering orifice. A processor receives input from both the primary sensor and the secondary sensor. A mechanism integrates the input from the primary sensor and the input from the secondary sensor in order to deduce the presence, absence or quality of a pilot flame.