Abstract:
A transverse electromagnetic mode hybrid coupler (10) for coaxial lines is formed within a metal plate (12) by milling out channels (16) of square cross-section. The walls of the channels serve as outer conductors; inner conductors (18, 19) of square cross-section are positioned within the channels. A diagonally disposed separator (34) includes a window and crosses the intersection of the coupler ports (21, 22, 23 and 24). The central conductors of the respective coaxial lines are joined by diagonally disposed segments of inner conductor such that each pair of coaxial lines is so joined. Each pair of lines provides a pair of ports. The line segments are spaced apart by a spring-loaded separator for rigidly maintaining a coupling distance. This design provides improved impedance matching and reliable coupling in both amplitude and phase over a wide spectral band.
Abstract:
In a microwave resonator (100 in Fig. 1), a variable cavity-wall segmentation (105) along the location of a propagational current null is employed for thermalcompensation purposes by utilizing it in conjunction with supplemental mechanisms (170, 175) which operate to counteract thermally-induced variations in the resonator's characteristic geometry. Because dimensional variations at a current null will have minimum impact on resonator coupling parameters, a variably-configured current-null segmentation serves in a minimal-impact fashion to absorb those thermally-induced dimensional variations which occur transverse to the null. Of the three specific mechanisms disclosed for variational counteraction in the typical context of a resonator having both longitudinal and transverse extent with respect to a propagational axis, the first is a thermally-invariant assembly which provides thermal stabilization by inhibiting variations in the resonator's characteristic longitudinal extent. The second is a thermally-responsive structure (470 in Fig. 4) configured to provide thermal compensation by affirmatively introducing longitudinal variations which are inversely proportional to otherwise-uncompensated transverse variations. The third mechanism, which may be employed in conjunction with either of the other two and which may take the form of thermally-invariant inserts configured as part of the resonant cavity's longitudinal walls, provides a further degree of thermal stabilization by inhibiting thermally-induced variations in the resonator's characteristic transverse dimensions.
Abstract:
Un coupleur hybride à mode électromagnétique transversal (10) pour des lignes coaxiales est pourvu d'une plaque métallique (12) en formant par fraisage des canaux (16) de section transversale carrée. Les parois des canaux font office de conducteurs externes. Des conducteurs internes (18, 19) de section transversale carrée sont positionnés à l'intérieur des canaux. Un séparateur disposé en diagonale (34) comprend une fenêtre et traverse l'intersection des ports du coupleur (21, 22, 23 et 24). Les conducteurs centraux des lignes coaxiales respectives sont reliés par des segments de conducteurs internes disposés en diagonale de manière à relier chaque paire de lignes coaxiales. Chaque paire de lignes présente une paire de ports. Les segments de lignes sont écartés par un séparateur sous l'effet d'un ressort qui maintient rigidement une distance de couplage. Cet agencement permet d'obtenir une meilleure adaptation d'impédance ainsi qu'un couplage fiable aussi bien en amplitude qu'en phase dans une bande spectrale étendue.
Abstract:
Dans un résonateur à micro-ondes (100 dans la figure 1), une segmentation variable (105) des parois d'une cavité le long de la position d'un zéro de courant de propagation est utilisée à des fins de compensation thermique en l'utilisant en association avec des mécanismes supplémentaires (170, 175) qui agissent pour contrecarrer les variations induites thermiquement dans la géométrie caractéristique du résonateur. Etant donné que les variations dimensionnelles au niveau d'un zéro de courant ont un impact minimum sur les paramètres de couplage du résonateur, une segmentation à configuration variable et à zéro de courant sert dans un mode d'impact minimum à absorber ces variations dimensionnelles induites thermiquement qui se produisent transversalement au zéro. Des trois mécanismes spécifiques ci-décrits pour contrecarrer les variations dimensionnelles dans le domaine caractéristique d'un résonateur ayant une dimension longitudinale et une dimension transversale par rapport à un axe de propagation, le premier est un assemblage à invariance thermique qui assure une stabilisation thermique en inhibant les variations dans la dimension longitudinale caractéristique du résonateur. Le second est une structure à sensibilité thermique (470 dans la fig. 4) dont la configuration assure une compensation thermique en introduisant des variations longitudinales qui sont inversement proportionnelles aux variations transversales autrement non compensées. Le troisième mécanisme, qui peut être utilisé en association avec l'un des deux autres mécanismes et qui peut prendre la forme d'éléments d'insertion à invariance thermique faisant partie des parois longitudinales de la cavité résonnante, assure un degré supplémentaire de stabilisation thermique en inhibant les variations induites thermiquement dans les dimensions transversales caractéristiques du résonateur.
Abstract:
In a microwave resonator (100 in Fig. 1), a variable cavity-wall segmentation (105) along the location of a propagational current null is employed for thermalcompensation purposes by utilizing it in conjunction with supplemental mechanisms (170, 175) which operate to counteract thermally-induced variations in the resonator's characteristic geometry. Because dimensional variations at a current null will have minimum impact on resonator coupling parameters, a variably-configured current-null segmentation serves in a minimal-impact fashion to absorb those thermally-induced dimensional variations which occur transverse to the null. Of the three specific mechanisms disclosed for variational counteraction in the typical context of a resonator having both longitudinal and transverse extent with respect to a propagational axis, the first is a thermally-invariant assembly which provides thermal stabilization by inhibiting variations in the resonator's characteristic longitudinal extent. The second is a thermally-responsive structure (470 in Fig. 4) configured to provide thermal compensation by affirmatively introducing longitudinal variations which are inversely proportional to otherwise-uncompensated transverse variations. The third mechanism, which may be employed in conjunction with either of the other two and which may take the form of thermally-invariant inserts configured as part of the resonant cavity's longitudinal walls, provides a further degree of thermal stabilization by inhibiting thermally-induced variations in the resonator's characteristic transverse dimensions.
Abstract:
A transverse electromagnetic mode hybrid coupler (10) for coaxial lines is formed within a metal plate (12) by milling out channels (16) of square cross-section. The walls of the channels serve as outer conductors; inner conductors (18, 19) of square cross-section are positioned within the channels. A diagonally disposed separator (34) includes a window and crosses the intersection of the coupler ports (21, 22, 23 and 24). The central conductors of the respective coaxial lines are joined by diagonally disposed segments of inner conductor such that each pair of coaxial lines is so joined. Each pair of lines provides a pair of ports. The line segments are spaced apart by a spring-loaded separator for rigidly maintaining a coupling distance. This design provides improved impedance matching and reliable coupling in both amplitude and phase over a wide spectral band.