Abstract:
In a microwave resonator (100 in Fig. 1), a variable cavity-wall segmentation (105) along the location of a propagational current null is employed for thermalcompensation purposes by utilizing it in conjunction with supplemental mechanisms (170, 175) which operate to counteract thermally-induced variations in the resonator's characteristic geometry. Because dimensional variations at a current null will have minimum impact on resonator coupling parameters, a variably-configured current-null segmentation serves in a minimal-impact fashion to absorb those thermally-induced dimensional variations which occur transverse to the null. Of the three specific mechanisms disclosed for variational counteraction in the typical context of a resonator having both longitudinal and transverse extent with respect to a propagational axis, the first is a thermally-invariant assembly which provides thermal stabilization by inhibiting variations in the resonator's characteristic longitudinal extent. The second is a thermally-responsive structure (470 in Fig. 4) configured to provide thermal compensation by affirmatively introducing longitudinal variations which are inversely proportional to otherwise-uncompensated transverse variations. The third mechanism, which may be employed in conjunction with either of the other two and which may take the form of thermally-invariant inserts configured as part of the resonant cavity's longitudinal walls, provides a further degree of thermal stabilization by inhibiting thermally-induced variations in the resonator's characteristic transverse dimensions.
Abstract:
In a microwave resonator (100 in Fig. 1), a variable cavity-wall segmentation (105) along the location of a propagational current null is employed for thermalcompensation purposes by utilizing it in conjunction with supplemental mechanisms (170, 175) which operate to counteract thermally-induced variations in the resonator's characteristic geometry. Because dimensional variations at a current null will have minimum impact on resonator coupling parameters, a variably-configured current-null segmentation serves in a minimal-impact fashion to absorb those thermally-induced dimensional variations which occur transverse to the null. Of the three specific mechanisms disclosed for variational counteraction in the typical context of a resonator having both longitudinal and transverse extent with respect to a propagational axis, the first is a thermally-invariant assembly which provides thermal stabilization by inhibiting variations in the resonator's characteristic longitudinal extent. The second is a thermally-responsive structure (470 in Fig. 4) configured to provide thermal compensation by affirmatively introducing longitudinal variations which are inversely proportional to otherwise-uncompensated transverse variations. The third mechanism, which may be employed in conjunction with either of the other two and which may take the form of thermally-invariant inserts configured as part of the resonant cavity's longitudinal walls, provides a further degree of thermal stabilization by inhibiting thermally-induced variations in the resonator's characteristic transverse dimensions.
Abstract:
Dans un résonateur à micro-ondes (100 dans la figure 1), une segmentation variable (105) des parois d'une cavité le long de la position d'un zéro de courant de propagation est utilisée à des fins de compensation thermique en l'utilisant en association avec des mécanismes supplémentaires (170, 175) qui agissent pour contrecarrer les variations induites thermiquement dans la géométrie caractéristique du résonateur. Etant donné que les variations dimensionnelles au niveau d'un zéro de courant ont un impact minimum sur les paramètres de couplage du résonateur, une segmentation à configuration variable et à zéro de courant sert dans un mode d'impact minimum à absorber ces variations dimensionnelles induites thermiquement qui se produisent transversalement au zéro. Des trois mécanismes spécifiques ci-décrits pour contrecarrer les variations dimensionnelles dans le domaine caractéristique d'un résonateur ayant une dimension longitudinale et une dimension transversale par rapport à un axe de propagation, le premier est un assemblage à invariance thermique qui assure une stabilisation thermique en inhibant les variations dans la dimension longitudinale caractéristique du résonateur. Le second est une structure à sensibilité thermique (470 dans la fig. 4) dont la configuration assure une compensation thermique en introduisant des variations longitudinales qui sont inversement proportionnelles aux variations transversales autrement non compensées. Le troisième mécanisme, qui peut être utilisé en association avec l'un des deux autres mécanismes et qui peut prendre la forme d'éléments d'insertion à invariance thermique faisant partie des parois longitudinales de la cavité résonnante, assure un degré supplémentaire de stabilisation thermique en inhibant les variations induites thermiquement dans les dimensions transversales caractéristiques du résonateur.