Abstract:
A method for forming a semiconductor device having a substantially cup-shaped region of one conductivity type between two regions of opposite conductivity type to preferably form a field effect transistor device. The region may be formed through one opening in an insulating layer located upon the surface of the device. Two successive diffusion operations of opposite conductivity types made through this same opening in the insulating layer forms the cup-shaped region to the desired thickness.
Abstract:
A method for fabricating high performance NPN bipolar transistors which result in shallow, narrow base devices is described.The method includes depositing a polycrystalline silicon layer (30) over a monocrystalline silicon surface in which the base and emitter regions (42, 44) of the transistor are to be formed. Boron ions (32) are ion implanted into the polycrystalline silicon layer (30) near the interface of the polycrystalline silicon layer with the monocrystalline silicon layer. An annealing of the layer structure partially drives in the boron into the monocrystalline silicon substrate. Arsenic ions (38) are ion implanted into the polycrystalline silicon layer (30). A second annealing step is utilized to fully drive in the boron to form the base region (42) and simultaneously therewith drive in the arsenic to form the emitter region (44) of the transistor. This process involving a two-step annealing process for the boron implanting ions is necessary to create a base with sufficient width and doping to avoid punch-through. There is also described a method for forming NPN transistors in an integrated circuit.