Abstract:
This circuitry translates a relatively large voltage bi-level logical signal to an inphase relatively low voltage bi-level signal for bistatic current-switching logical circuitry. A transistor is connected in the common base circuit arrangement for a first order of input-output circuit isolation. Substantially complete isolation is afforded by a reference tracking circuit which is arranged to track exactly for temperature, base-to-emitter voltage and process variations. This circuit provides a potential at the base of the transistor which is the sum of the emitter-to-base voltage drop and one half of the applied energizing potential. The proper base potential is effected by simple adjustment of the ratio of the value of the input resistor to the value of the load resistor. Many such circuits may be operated on a single semiconductor chip.
Abstract:
The circuitry is arranged to develop a highly accurate and stable reference electric level voltage and/or current for distribution to a plurality of logical circuits on a semiconductor chip having of the order of a thousand such circuits thereon. An input reference voltage is developed by a source reference circuit and applied to an operational amplifier circuit having "evener" circuitry for substantially equalizing the currents in the input transistors. This evener circuitry is essentially an operational amplifier within an op-amp. It monitors and adjusts feedback voltages. The operational amplifier and evener circuitry drives a reference voltage distribution grid laid out over the semiconductor chip.
Abstract:
This bistatic signal current driver circuit applies positively controlled drive at both signal current levels to an output open collector driver transistor by way of two substantially identical signal translating networks which track each other and compensate for variations in global base-to-emitter voltage drops, beta factors, and supply voltages. An inverted output is available merely by switching connections internally of the two networks to reverse the phase of the driving currents.