Abstract:
PROBLEM TO BE SOLVED: To classify a packet to be processed about an applicable rule or other data items in response to a plurality of decision reference values included in each packet. SOLUTION: A range token with a nonuniform length is allocated to a reference range of a decision reference value, and as a result, each combination of input values from a packet can be represented by a specific variable length combination of range tokens. A retrieval tree including a stored rule ID is designed so that each combination of specific range tokens used as an input of a longest match prefix lookup operation can supply a necessary ID. A combination of different range tokens having the same prefix can use the same path to one stored rule ID, as a result, the storage area requirement and the time requirement of a classification procedure are reduced in this method, and simple update at a time when rules are changed can be performed.
Abstract:
The present invention discloses a method and apparatus for transmitting incoming packet data via a data bus to a memory unit and transmitting outgoing packet data from the memory unit to a communication link via the data bus. The method for transmitting packet data via a data bus to a memory unit comprises the steps of receiving a stream of packet data; storing the received packet data in a buffer unit; and in response to the stored packet data, transmitting a burst of packet data to the memory unit, wherein the size of the burst of packet data depends on the properties of the data bus. The method for transmitting outgoing packet data from a memory unit to a communication link via a data bus comprises the steps of transmitting a burst of packet data from the memory unit to a buffer unit, wherein the size of the burst of packet data depends on the properties of the data bus; storing the packet data in the buffer unit; segmenting the packet data in the buffer; and in response to the transmission step, sending the segmented packet data to the communication link.
Abstract:
A switching device is able to route the arriving data packets according to data packet destination information to dedicated output ports. The switching arrangement has, for each set of input ports in the switching device, a set of output buffers with an output buffer for storing the payload of each data packet at an address in the output buffer which pertains to the same set of output buffers and belongs to the dedicated output ports. At least one of the output buffers has a set of output queues with an output queue for each output port for storing the address of each payload stored in the corresponding output buffer. An arbiter controls a readout order of the stored addresses. For the output buffers which pertain to the same set of output ports a multiplexer multiplexes according to the readout order the payloads from the output buffers to the output ports.
Abstract:
A switching device is able to route the arriving data packets according to data packet destination information to dedicated output ports. The switching arrangement has, for each set of input ports in the switching device, a set of output buffers with an output buffer for storing the payload of each data packet at an address in the output buffer which pertains to the same set of output buffers and belongs to the dedicated output ports. At least one of the output buffers has a set of output queues with an output queue for each output port for storing the address of each payload stored in the corresponding output buffer. An arbiter controls a readout order of the stored addresses. For the output buffers which pertain to the same set of output ports a multiplexer multiplexes according to the readout order the payloads from the output buffers to the output ports.
Abstract:
In a switching system interconnecting transmission links (21-i, 23-i) on which circuit switched (CS) and packet switched (PS) information is transferred, a switch fabric (11) is provided which interconnects a plurality of input ports (15-i) to a plurality of output ports (19-i). The information arriving on incoming links is converted in switch adapters (13-i) to uniform minipackets, each having a routing address designating the required output port. The switch fabric consists of parallel equal switching slices, e.g. binary routing trees (71), which transfer in a non-blocking manner each minipacket from its input port to one output port in response to the routing address. Collecting means (73, 75) are provided at each output port for accepting the minipackets arriving from the different input ports.
Abstract:
The present invention discloses a method and apparatus for transmitting incoming packet data via a data bus to a memory unit and transmitting outgoing packet data from the memory unit to a communication link via the data bus. The method for transmitting packet data via a data bus to a memory unit comprises the steps of receiving a stream of packet data; storing the received packet data in a buffer unit; and in response to the stored packet data, transmitting a burst of packet data to the memory unit, wherein the size of the burst of packet data depends on the properties of the data bus. The method for transmitting outgoing packet data from a memory unit to a communication link via a data bus comprises the steps of transmitting a burst of packet data from the memory unit to a buffer unit, wherein the size of the burst of packet data depends on the properties of the data bus; storing the packet data in the buffer unit; segmenting the packet data in the buffer; and in response to the transmission step, sending the segmented packet data to the communication link.
Abstract:
In a switching system interconnecting transmission links (21-i, 23-i) on which circuit switched (CS) and packet switched (PS) information is transferred, a switch fabric (11) is provided which interconnects a plurality of input ports (15-i) to a plurality of output ports (19-i). The information arriving on incoming links is converted in switch adapters (13-i) to uniform minipackets, each having a routing address designating the required output port. The switch fabric consists of parallel equal switching slices, e.g. binary routing trees (71), which transfer in a non-blocking manner each minipacket from its input port to one output port in response to the routing address. Collecting means (73, 75) are provided at each output port for accepting the minipackets arriving from the different input ports.
Abstract:
In a switching system interconnecting transmission links (21-i, 23-i) on which circuit switched (CS) and packet switched (PS) information is transferred, a switch fabric (11) is provided which interconnects a plurality of input ports (15-i) to a plurality of output ports (19-i). The information arriving on incoming links is converted in switch adapters (13-i) to uniform minipackets, each having a routing address designating the required output port. The switch fabric consists of parallel equal switching slices, e.g. binary routing trees (71), which transfer in a non-blocking manner each minipacket from its input port to one output port in response to the routing address. Collecting means (73, 75) are provided at each output port for accepting the minipackets arriving from the different input ports.
Abstract:
A switching device is able to route the arriving data packets according to data packet destination information to dedicated output ports. The switching arrangement has, for each set of input ports in the switching device, a set of output buffers with an output buffer for storing the payload of each data packet at an address in the output buffer which pertains to the same set of output buffers and belongs to the dedicated output ports. At least one of the output buffers has a set of output queues with an output queue for each output port for storing the address of each payload stored in the corresponding output buffer. An arbiter controls a readout order of the stored addresses. For the output buffers which pertain to the same set of output ports a multiplexer multiplexes according to the readout order the payloads from the output buffers to the output ports.
Abstract:
In a switching system interconnecting transmission links (21-i, 23-i) on which circuit switched (CS) and packet switched (PS) information is transferred, a switch fabric (11) is provided which interconnects a plurality of input ports (15-i) to a plurality of output ports (19-i). The information arriving on incoming links is converted in switch adapters (13-i) to uniform minipackets, each having a routing address designating the required output port. The switch fabric consists of parallel equal switching slices, e.g. binary routing trees (71), which transfer in a non-blocking manner each minipacket from its input port to one output port in response to the routing address. Collecting means (73, 75) are provided at each output port for accepting the minipackets arriving from the different input ports.