Abstract:
A branched polyamine comprises about 45 to about 70 backbone tertiary amine groups, about 90 to about 140 backbone secondary amine groups, a positive number n′ greater than 0 of backbone terminating primary amine groups, and a positive number q greater than 0 of backbone terminating carbamate groups of formula (2): wherein (n′+q) is a number equal to about 45 to about 70, the starred bond of formula (2) is linked to a backbone nitrogen of the branched polyamine, L′ is a divalent radical comprising 3 to 30 carbons, and q/(n′+q)×100% equals about 9% to about 47%.
Abstract:
Nanoparticles comprise a drug, a first block polymer and a second block polymer. The first block polymer has a poly(ethylene oxide) (PEO) block and a polycarbonate block bearing a side chain aromatic nitrogen-containing heterocycle (N-heterocycle). The N-heterocycle can be in the form of a base, a hydrosalt of the base, a sulfobetaine adduct of the base, or a combination thereof. The second block polymer has a PEO block and a polycarbonate block bearing a side chain catechol group, which can be present as a catechol, oxidized form of a catechol, and/or a polymerized form of a catechol. The nanoparticles can be dispersed in water and are capable of controlled release of the drug.
Abstract:
Cationic antimicrobial polymers have been synthesized by a bulk addition polymerization of a nucleophilic agent comprising two tertiary amines and an electrophilic agent that comprises two leaving groups and an aromatic ring between the leaving groups. The reaction solvent for the polymerization is chosen to allow precipitation of the cationic polymer at the polymerization temperature, thereby limiting molecular weight. Quaternization and polymerization occur concurrently. The cationic polymers can be highly active against Gram-negative and Gram-positive microbes, and/or fungi. The cationic polymers can also be non-hemolytic and non-cytotoxic at the effective concentration against the microbes.
Abstract:
PROBLEM TO BE SOLVED: To provide an improved method for carrying out depolymerization of a polymer. SOLUTION: The method is provided for carrying out depolymerization of the polymer containing an electrophilic linkage in the presence of a catalyst and a nucleophilic reagent, wherein production of undesirable byproducts resulting from polymer degradation is minimized. The reaction can be carried out at a temperature of 80°C or lower, and generally involves the use of an organic, nonmetallic catalyst, thereby ensuring that the depolymerization product(s) are substantially free of metal contaminants. In an exemplary depolymerization method, the catalyst is a carbene compound such as an N-heterocyclic carbene, or is a precursor to a carbene compound. The method provides an important alternative to current recycling techniques such as those used in the degradation of polyesters, polyamides, and the like. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
Polysulfones and methods for forming polysulfones are disclosed herein. The polysulfones are prepared from thiols and hexahydrotriazines. The thiols may be, for example, dithiols, trithiols, monothiols, or mixtures thereof. The thiols and hexahydrotriazines may be polymerized to form a polythioether. The polythioether may thereafter be oxidized to form a polysulfone. The polysulfones are prepared from an efficient and simple synthetic method, and the properties of the prepared polysulfones can be readily tuned. The prepared polysulfones may have improved thermal properties, improved mechanical properties, and enhanced functionality.
Abstract:
A method is provided for carrying out depolymerization of a polymer containing electrophilic linkages in the presence of a catalyst and a nucleophilic reagent, wherein production of undesirable byproducts resulting from polymer degradation is minimized. The reaction can be carried out at a temperature of 80°C or less, and generally involves the use of an organic, nonmetallic catalyst, thereby ensuring that the deploymerization product(s) aer substantially free of metal contaminants. In an exemplary depolymerization method, the catalyst is a carbene compound such as an N-heterocyclic carbene, or is a precursor to a carbene compound. The method provides an important alternative to current recycling techniques such as those used in the degradation of polyesters, polyamides, and the like.
Abstract:
Method and apparatus for controlling metals in a liquid are described. The liquid is contacted with a hexahydrotriazine and/or a hemiaminal material, and metal is adsorbed from the liquid onto the material. The hexahydrotriazine and/or hemiaminal material may be made from a diamine and an aldehyde.
Abstract:
A method comprises forming a reaction mixture comprising a terephthalate polyester, a glycol comprising 2 to 5 carbons, and an amidine organocatalyst; and heating the reaction mixture at a temperature of about 120° C or more to depolymerize the terephthalate polyester, thereby forming a terephthalate reaction product comprising a monomeric dihydroxy terephthalate diester; wherein the terephthalate reaction product contains terephthalate oligomers in an amount less than the amount of terephthalate oligomers that would result from i) substituting the amidine organocatalyst with an equimolar amount of a guanidine catalyst and ii) depolymerizing the terephthalate polyester under otherwise identical reaction conditions.
Abstract:
A method is provided for carrying out depolymerization of a polymer containing electrophilic linkages in the presence of a catalyst and a nucleophilic reagent, wherein production of undesirable byproducts resulting from polymer degradation is minimized. The reaction can be carried out at a temperature of 80° C. or less, and generally involves the use of an organic, nonmetallic catalyst, thereby ensuring that the depolymerization product(s) are substantially free of metal contaminants. In an exemplary depolymerization method, the catalyst is a carbene compound such as an N-heterocyclic carbene, or is a precursor to a carbene compound. The method provides an important alternative to current recycling techniques such as those used in the degradation of polyesters, polyamides, and the like.