Abstract:
Production of a sintered ceramic dielectric formed from a green sheet having a uniform microporous structure providing uniform dielectric properties and compressibility for lamination of stacked green sheets into a unitary laminate which may be provided with an internal pattern of electrical conductors extending therein. The structure is obtained by blending the ceramic particulate with a binder resin soluble in an azeotropic mixture which is formed from a solvent for the binder resin and a non-solvent in which the resin is at most only slightly soluble, which on evaporation of said azeotropic mixture forms said structure.
Abstract:
CERAMIC DIELECTRICS Production of a sintered ceramic dielectric formed from a green sheet having a uniform microporous structure providing uniform dielectric properties and compressibility for lamination of stacked green sheets into a unitary laminate which may be provided with an internal pattern of electrical conductors extending therein. The structure is obtained by blending the ceramic particulate with a binder resin soluble in an azeotropic mixture which is formed from a solvent for the binder resin and a non-solvent in which the resin is at most only slightly soluble, which on evaporation of said azeotropic mixture forms said structure.
Abstract:
A method for manufacturing a multilayer ceramic module structure is described which includes a ceramic body having a plurality of continuous glass channels within the body. The module transmits signals from point to point on the module and to points off of the module by allowing the movement of optical pulses through optical channels rather than the conventional electrical pulses and metal wiring.