Abstract:
A tunable optical filter suitable for use in integrated optical circuits including the combination of a substrate having an optical waveguide such as a thin film thereon. Means such as an optical fiber or grating is provided for introducing light waves in a first mode into the waveguide. An acoustic transducer driven by a tunable electronic signal source is used to propagate acoustic waves on the surface of the waveguide. The optical and acoustic waves interact to produce another optical wave having a mode different than the original optical wave when phase matching conditions are satisfied. A mode filter is located in the waveguide to block the original optical wave and pass the second optical wave.
Abstract:
A coupler for optical guided waves is described which is electronically switchable and wherein light traveling in a fiber optic waveguide can be coupled into a thin film waveguide. The coupler consists of a substrate which in one embodiment is triangular in shape, with a thin film waveguide and an acoustic transducer on one surface thereof. The transducer is designed to produce an acoustic wave across the surface of the substrate and beneath the thin film waveguide. The output light from the optical fiber is introduced via a lens into a Fabry-Perot cavity formed by placing two high reflectivity mirrors located on the other two sides of the substrate. The light from the optical fiber is reflected back and forth in the cavity by being reflected from the surface on which the thin film is located. When the acoustic transducer is operated at the proper frequency, the light in the cavity is coupled into the thin film waveguide. Another embodiment is also shown wherein the fiber optic is connected directly into the substrate which is not triangular in shape.
Abstract:
An integrated acoustic surface wave device is provided by this disclosure wherein a piezoelectric field associated with an acoustic surface wave causes a material adjacent to the surface to transform from one physical state to another physical state. The changes in state due to the presence of the piezoelectric wave are utilized to detect, amplify and store information. The presence of the piezoelectric wave controls external physical quantities, e.g., voltage and current, for information processing and storage. In particular, an amorphous semiconducting material is deposited on the surface of a piezoelectric surface wave acoustic delay line at a location where the presence of the traversing piezoelectric wave is to be detected. Contact electrodes are provided on the amorphous material and are connected to an external electrical circuit wherein there is a voltage source and a load means. The voltage source provides an electric field in the amorphous material of a value below that necessary to achieve the threshold value for switching the material from a high-voltage and low-current state to a high-current and low-voltage state. In this manner, the piezoelectric field of the acoustic surface wave which transiently appears at the amorphous material when added to the externally applied electric field causes it to switch states and thereby gives rise to a pulse indication in the external electrical circuit.
Abstract:
An integrated acoustic surface wave device is provided by this disclosure wherein a piezoelectric field associated with an acoustic surface wave causes a material adjacent to the surface to transform from one physical state to another physical state. The changes in state due to the presence of the piezoelectric wave are utilized to detect, amplify and store information. The presence of the piezoelectric wave controls external physical quantities, e.g., voltage and current, for information processing and storage. In particular, an amorphous semiconducting material is deposited on the surface of a piezoelectric surface wave acoustic delay line at a location where the presence of the traversing piezoelectric wave is to be detected. Contact electrodes are provided on the amorphous material and are connected to an external electrical circuit wherein there is a voltage source and a load means. The voltage source provides an electric field in the amorphous material of a value below that necessary to achieve the threshold value for switching the material from a high-voltage and low-current state to a high-current and low-voltage state. In this manner, the piezoelectric field of the acoustic surface wave which transiently appears at the amorphous material when added to the externally applied electric field causes it to switch states and thereby gives rise to a pulse indication in the external electrical circuit.