1.
    发明专利
    未知

    公开(公告)号:SE367525B

    公开(公告)日:1974-05-27

    申请号:SE845071

    申请日:1971-06-30

    Applicant: IBM

    Abstract: An integrated acoustic surface wave device is provided by this disclosure wherein a piezoelectric field associated with an acoustic surface wave causes a material adjacent to the surface to transform from one physical state to another physical state. The changes in state due to the presence of the piezoelectric wave are utilized to detect, amplify and store information. The presence of the piezoelectric wave controls external physical quantities, e.g., voltage and current, for information processing and storage. In particular, an amorphous semiconducting material is deposited on the surface of a piezoelectric surface wave acoustic delay line at a location where the presence of the traversing piezoelectric wave is to be detected. Contact electrodes are provided on the amorphous material and are connected to an external electrical circuit wherein there is a voltage source and a load means. The voltage source provides an electric field in the amorphous material of a value below that necessary to achieve the threshold value for switching the material from a high-voltage and low-current state to a high-current and low-voltage state. In this manner, the piezoelectric field of the acoustic surface wave which transiently appears at the amorphous material when added to the externally applied electric field causes it to switch states and thereby gives rise to a pulse indication in the external electrical circuit.

    2.
    发明专利
    未知

    公开(公告)号:SE359688B

    公开(公告)日:1973-09-03

    申请号:SE844871

    申请日:1971-06-30

    Applicant: IBM

    Abstract: A mask for the manufacture of semiconductor and other very small components. The mask is comprised of patterns of multi-component oxides and fluorides, such as spinels, perovskites, and garnets. In general, the materials are harder than the components being manufactured and are opaque to the wavelength used in photoresist techniques, while being transparent to the visible wavelengths. Materials with an energy gap between approximately 2.8 eV and 5 eV satisfy these optical properties, a particular example being GaFeO3. These masks are not damaged by surface defects on the components and can be visually aligned.

Patent Agency Ranking