Abstract:
P-type metal-oxide semiconductor field effect transistor (PMOSFET) devices have a characteristic property known as threshold voltage. This threshold voltage may consist of separate threshold voltages associated with the main portion of the gate region of the device and with the sidewall corner of the device. Under some conditions, the threshold behavior in the sidewall corner region of the device may dominate the performance of the device, not necessarily in the manner intended by the designer of the device. A method of controlling threshold voltage behavior is described. In particular, ion implantation of nitrogen in the gate sidewall region of the device can provide such control. Devices made by this method are also described.
Abstract:
The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a -containing layer having a 110 crystal orientation and a biaxial compressive strain. The term ''biaxial compressive stress'' is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing 110 layer; and creating a biaxial strain in the silicon-containing 110 layer.
Abstract:
PROBLEM TO BE SOLVED: To obtain an improved structure and a production process of semiconductor device, e.g. MOSFET, in which possibility of thermal shrinkage and permeation of boron are reduced. SOLUTION: A sacrificial oxide layer 1 and a polysilicon/silicon nitride film are deposited sequentially on a substrate 2, an opening is made therein by etching (at the part of 5, 15) and ions are implanted in order to suppress hot carriers 11 thus suppressing punch through 8 between source and drain. After it is filled with a gate insulation film 12, a polysilicon layer 14 and a tungsten layer 15, upper part of an implanted part 18 for extending the source-drain is opened by etching, a spacer 19 is formed therein and contact implantation appropriate to P or N type is carried out. Thereafter, a nitride etch barrier layer 20 is formed, a contact region 21 is opened and filled with a polysilicon layer 22.
Abstract:
PROBLEM TO BE SOLVED: To provide a method of forming semiconductor elements, which are electrically insulated from each other within a silicon base body, and a semiconductor structure manufactured by this method. SOLUTION: This method of forming semiconductor elements is executed by having trenches formed in the selected regions of a silicon base body 10 and depositing a barrier material on the sidewalls of the trenches. The barrier material is removed from the first sidewall parts 34 of the trenches, while the barrier material is left on the second sidewall parts 32 of the trenches and a barrier layer 26 is formed in each trench. A dielectric material 38 is deposited in the trenches and the dielectric material is deposited on each of the exposed first sidewall parts within the trenches and the barrier layers within the trenches. The dielectric material is annealed in an oxidizing atmosphere and is highly compacted, and the second sidewall parts of the trenches are prevented from being oxidized by the barrier layers. A plurality of the semiconductor elements are formed within the silicon base body, and the elements are electrically insulated from each other by the dielectric material.
Abstract:
PROBLEM TO BE SOLVED: To reduce the threshold voltage(Vt) roll-up/roll-off effect of a MOSFET. SOLUTION: The MOSFET is formed through the stages of forming a 1st area by injecting a dopant of a 1st type into at least part of a semiconductor substrate, annealing the 1st well area, and injecting nitrogen into the annealed 1st well area; forming a gate insulating film on at least part of the 1st well area; and providing a gate electrode on a gate oxide film and providing a source/drain area on the substrate below the gate oxide film nearby the gate electrode. COPYRIGHT: (C)2003,JPO
Abstract:
PROBLEM TO BE SOLVED: To reduce a swing below a threshold, a photoelectron degradation, and the sensitivity to a charge existing near the side wall of a device or the like, by forming a second divot shallower than a first divot in a region adjacent to an insulating P well. SOLUTION: This is a buried channel PFET device having a first deep divot 13 on the right side and a second shallow divot 12 on the left side. There is a gate conductor 14 of an N + polysilicon gate conductor and a p-type depletion layer 15 on an N well 11 surrounded by a nitride layer 16. A gate oxide layer 18 separates the gate conductor 14 from the depletion region 15. The nitride layer 16 contacts a shallow trench separation region 10. Contrary to an effect to a surface channel NFET, a parasitic conductance at the edge is produced by the shallow divot 12 in the buried channel PFET. If a gate control is out of control, a gradient below a threshold, an off current, and the reliability of a photoelectron are reduced.
Abstract:
The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a -containing layer having a 110 crystal orientation and a biaxial compressive strain. The term ''biaxial compressive stress'' is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing 110 layer; and creating a biaxial strain in the silicon-containing 110 layer.
Abstract:
The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a -containing layer having a 110 crystal orientation and a biaxial compressive strain. The term ''biaxial compressive stress'' is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing 110 layer; and creating a biaxial strain in the silicon-containing 110 layer.
Abstract:
An etch rate of a nitride liner layer is improved relative to an etch rate of a nitride cap layer. The nitride liner layer is located at an exposed portion of a substrate adjacent to a stacked structure also located atop the substrate. The nitride cap layer is located atop the stacked structure. An oxide spacer is formed along sidewalls of the stacked structure. The nitride liner layer is patterned and etched to form at least one opening therein to the substrate while the nitride cap layer remains substantially intact.
Abstract:
The process rules for manufacturing semiconductor devices such as MOSFET's are modified to provide dual work-function doping following the customary gate sidewall oxidation step, greatly reducing thermal budget and boron penetration concerns. The concern of thermal budget is further significantly reduced by a device structure which allows a reduced gap aspect ratio while maintaining low sheet resistance values. A reduced gap aspect ratio also relaxes the need for highly reflowable dielectric materials and also facilitates the use of angled source-drain (S-D) and halo implants. Also provided is a novel structure and process for producing a MOSFET channel, lateral doping profile which suppresses short channel effects while providing low S-D junction capacitance and leakage, as well as immunity to hot-carrier effects. This also affords the potential for reduction in the contact stud-to-gate conductor capacitance, because borderless contacts can be formed with an oxide gate sidewall spacer. As a result, the S-D junctions can be doped independently of the gate conductor doping, more easily allowing a variety of MOSFET structures.