Abstract:
Droplets of a magnetic liquid are pulled from an outlet or orifice of a nozzle by applying a magnetic force to the magnetic liquid, which is under a relatively low static pressure, within the nozzle whereby the droplets, which are ink, impinge upon a recording surface. Each droplet is pulled from the outlet of the nozzle by applying a magnetic force adjacent the outlet, a magnetic force from the opposite side of the recording surface from the nozzle outlet, or magnetic forces from both sides of the recording surface.
Abstract:
An ink jet recording system emits a stream of ink which is amplitude or frequency modulated to produce discrete droplets. A weir is located adjacent to the trajectory of the droplets, downstream from the jet orifice, and at a critical location near the point of drop formation where it contacts and deflects droplets of larger transverse diameter. Amplitude modulation yields ink drops of basically the same volume which break off before and after the weir, with those which break off earlier being deflected during an initial interval while they have a large transverse diameter. In frequency modulation the actual size of the drops and ultimate diameter are modulated. Such deflected droplets separate from the stream closer to the jet orifice. The deflected droplets are caught in a gutter.
Abstract:
One or more magnetic fields having non-uniform gradients is periodically applied to a magnetic liquid stream, which is preferably isotropic and virtually free of remanence, to create perturbations in the stream so as to form droplets therefrom with substantially uniform spacing and of substantially uniform size. If more than one of the magnetic fields is applied, the maximum strength of each field is spaced an integral multiple wave length from the maximum strength of the adjacent magnetic field with each magnetic field having substantially the same maximum strength. The wave length of the perturbation is preferably between 4d and 8d where d is the diameter of the stream.
Abstract:
An ink jet recording system including means for producing a stream of high speed ferrofluid ink droplets, magnetic deflection means for deflecting said ink stream, said magnetic deflecting means including two spaced pole pieces forming an air gap therebetween located so that said ink stream passes therethrough, said gap being shaped to form a gradient magnetic field therein, said gap further being shaped so that movement of said ink stream in a direction normal to the gradient magnetic field does not result in the ink stream striking a pole piece. Said system is further characterized by a plurality of magnetic deflection means located in the path of said ink stream wherein each deflecting means is capable of applying an increment of deflecting force to said stream.