Abstract:
A slide cartridge (1) for use with a chemical analyzer includes an upper ring (2) and a lower ring (4) secured together but rotatable with respect to each other. The upper and lower rings define a plurality of reaction chambers (6) between them, which receive dry analyte test slides (8). A gear track formed in the underside of the lower ring engages a pinion gear (28) attached to a stepping motor (30) of the chemical analyzer in order to rotate the slide cartridge. The slide cartridge is rotated under a sample fluid metering device (68), which deposits a sample fluid on the test slides through a plurality of spotter ports (66) formed in the upper ring, and above a reflectometer (22), which performs a colorimetric measurement on the spotted test slides through viewing windows (18) formed in the lower ring of the slide cartridge.
Abstract:
A retaining clip for retaining reagent test slides in a stacked arrangement is formed as a unitary member and has first, second and third plates, each having an inner surface and an outer surface. The inner surface of the first plate pivots towards the inner surface of the second plate, and the inner surface of the third plate also pivots such that the inner surfaces of the first and third plates at least partially face each other upon pivoting. The inner surfaces of the first and third plates are separated by a distance to accommodate the reagent test slides in a stacked arrangement. Alternatively, the third and second plates can be fixed rigidly to each other with only the first plate pivoting to at least partially face the third plate upon pivoting.
Abstract:
A slide cartridge for use with a chemical analyzer includes an upper ring and a lower ring secured together but rotatable with respect to each other. The upper and lower rings define a plurality of reaction chambers between them, which receive dry analyte test slides. A gear track formed in the underside of the lower ring engages a pinion gear attached to a stepping motor of the chemical analyzer in order to rotate the slide cartridge. The slide cartridge is rotated under a sample fluid metering device, which deposits a sample fluid on the test slides through a plurality of spotter ports formed in the upper ring, and above a reflectometer, which performs a colorimetric measurement on the spotted test slides through viewing windows formed in the lower ring of the slide cartridge. A chemical analyzer with which the slide cartridge may be used includes a reflectometer, a sample fluid metering device and a stepping motor for rotating the slide cartridge.
Abstract:
A slide cartridge for use with a chemical analyzer includes an upper ring an d a lower ring secured together but rotatable with respect to each other. The upper and lower rings define a plurality of reaction chambers between them, which receive dry analyte test slides. A gear track formed in the underside of the lower ring engages a pinion gear attached to a stepping motor of the chemical analyzer in order to rotate the slide cartridge. The slide cartridg e is rotated under a sample fluid metering device, which deposits a sample flu id on the test slides through a plurality of spotter ports formed in the upper ring, and above a reflectometer, which performs a colorimetric measurement o n the spotted test slides through viewing windows formed in the lower ring of the slide cartridge. A chemical analyzer with which the slide cartridge may be used includes a reflectometer, a sample fluid metering device and a stepping motor for rotating the slide cartridge.
Abstract:
A retaining clip for retaining reagent test slides in a stacked arrangement is formed as a unitary member and has first, second and third plates, each having an inner surface and an outer surface. The inner surface of the first plate pivots towards the inner surface of the second plate, and the inner surface of the third plate also pivots such that the inner surfaces of the first and third plates at least partially face each other upon pivoting. The inner surfaces of the first and third plates are separated by a distance to accommodate the reagent test slides in a stacked arrangement. Alternatively, the third and second plates can be fixed rigidly to each other with only the first plate pivoting to at least partially face the third plate upon pivoting.
Abstract:
A retaining clip for retaining reagent test slides in a stacked arrangement is formed as a unitary member and has first, second and third plates, each having an inner surface and an outer surface. The inner surface of the first plate pivots towards the inner surface of the second plate, and the inner surface of the third plate also pivots such that the inner surfaces of the first and third plates at least partially face each other upon pivoting. The inner surfaces of the first and third plates are separated by a distance to accommodate the reagent test slides in a stacked arrangement. Alternatively, the third and second plates can be fixed rigidly to each other with only the first plate pivoting to at least partially face the third plate upon pivoting.
Abstract:
A retaining clip for retaining reagent test slides in a stacked arrangement is formed as a unitary member and has first, second and third plates, each having an inner surface and an outer surface. The inner surface of the first plate pivots towards the inner surface of the second plate, and the inner surface of the third plate also pivots such that the inner surfaces of the first and third plates at least partially face each other upon pivoting. The inner surfaces of the first and third plates are separated by a distance to accommodate the reagent test slides in a stacked arrangement. Alternatively, the third and second plates can be fixed rigidly to each other with only the first plate pivoting to at least partially face the third plate upon pivoting.