Abstract:
A process is described for preparing a catalyst comprising at least one zeolite with a modified EUO structure type, at least one matrix and at least one metal from group VIII of the periodic classification of the elements. Said catalyst is used in a process for the isomerization of an aromatic feed comprising at least one compound containing eight carbon atoms per molecule.
Abstract:
A process for the production of middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis comprising a limited content of molecules containing at least one oxygen atom. In the process, the feedstock is subjected to at least one hydrocracking/hydroisomerization stage in the presence of a hydrogen stream also containing a limited atomic oxygen content.
Abstract:
The invention relates to a process for conversion of a paraffinic feedstock that has a number of carbon atoms of between 9 and 25, whereby said paraffinic feedstock is produced starting from renewable resources, employing a catalyst that comprises at least one hydrogenating-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table, taken by themselves or in a mixture, and a substrate that comprises at least one IZM-2 zeolite and at least one binder, with said process being carried out at a temperature of between 150 and 500° C., at a pressure of between 0.1 MPa and 15 MPa, at an hourly volumetric flow rate of between 0.1 and 10 h−1, and in the presence of a total quantity of hydrogen mixed with the feedstock such that the hydrogen/feedstock ratio is between 70 and 2,000 Nm3/m3 of feedstock.
Abstract:
A process for the production of middle distillates comprising at least one hydrocracking stage that oligomerizes a paraffinic feedstock produced by Fischer-Tropsch synthesis, the process using a catalyst that comprises at least one hydrogenating-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table, by themselves or in a mixture, and a substrate that comprises a beta zeolite in the form of crystallites with a mean size that is less than 100 nm dispersed in at least one porous mineral matrix, whereby the beta zeolite has a mesopore volume of less than 0.4 ml/g.
Abstract:
Process for isomerization of paraffinic feedstocks operating at a temperature of between 200° C. and 500° C., at a total pressure of between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen of between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kg of feedstock introduced per kg of catalyst and per hour, using a catalyst having at least one group VIII metal, at least one matrix and at least one IZM-2 zeolite, the total weight content of alkali metal and/or alkaline-earth metal elements is less than 200 ppm by weight relative to the total mass of said catalyst.
Abstract:
A method for producing middle distillates from a feedstock produced by Fischer-Tropsch synthesis and containing oxygenated compounds, including: a) a step of bringing the feedstock into contact with a hydrotreating catalyst allowing the methanation of the CO and CO2 contained in the feedstock or originating from the decomposition of the oxygenated compounds present in the feedstock, b) a step of hydroisomerization/hydrocracking of at least a part of the liquid and gaseous effluent originating from step a), in the presence of a hydroisomerization/hydrocracking catalyst, c) a step of gas/liquid separation of the effluent originating from step b) into a gaseous fraction comprising predominantly hydrogen and a hydroisomerized/hydrocracked liquid fraction, d) a step of fractionation of the liquid fraction separated in step c) to obtain at least one fraction of middle distillate, in which the hydrogen in step a) is obtained from the gaseous fraction separated in step c).
Abstract:
The present invention relates to a process for preparing a difunctional catalyst using a zeolite IZM-2, a hydrogenating function and a matrix. The preparation process according to the invention simultaneously allows preferential localization of said hydrogenating function on the surface and/or in the microporosity of zeolite IZM-2 and homogeneous distribution of the hydrogenating function in the catalyst and preferably on zeolite IZM-2 by means of using an impregnation solution comprising specific noble metal precursors combined with the presence of ammonium salts, with a quite precise ratio of ammonium salt to noble metal.
Abstract:
A catalyst is described comprising at least one IZM-2 zeolite containing silicon atoms and aluminum atoms, at least one matrix and at least one metal from group VIII of the periodic classification of the elements, the zeolite having a ratio between the number of moles of silicon and the number of moles of aluminum in the range 60 to 150. Said catalyst is used in a process for the isomerization of an aromatic feed comprising at least one compound containing eight carbon atoms per molecule.
Abstract:
The present invention describes a process for the isomerization of paraffinic feedstocks operating at a temperature of between 200° C. and 500° C., at a total pressure of between 0.45 MPa and 7 MPa, at a hydrogen partial pressure of between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilograms of feedstock introduced per kilogram of catalyst and per hour and using a catalyst comprising at least one metal of group VIII of the periodic table of elements, at least one matrix and at least one zeolite IZM-2, in which the ratio between the number of moles of silicon and the number of moles of aluminium of the zeolite IZM-2 network is between 25 and 55, preferably between 25 and 50, and preferably between 30 and 50.
Abstract:
A process is described for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis and divided into a light fraction (cold condensate) and a heavy fraction (waxes). The process involves fractionation of the waxes to obtain a light fraction, the final boiling point of which is between 350° C. and 400° C., and a heavy fraction which boils above the light fraction. The light fraction is mixed with at least one portion of the cold condensate. The resultant mixture is hydrotreated in the presence of a hydrotreatment catalyst of at least one portion of the resultant effluent is hydroisomerized in the presence of a catalyst comprising at least one noble metal from Group VIII and at least one zeolite IZM-2. At least one portion of the heavy fraction is subjected to hydrocracking and hydroisomerization in the presence of a hydrocracking catalyst. The resultant effluents are fractionated to obtain at least one middle distillates fraction.