Abstract:
The present disclosure is directed to methods of preparing stable suspensions of precious metal nanoparticles and methods for attaching bio-molecules to the nanoparticles. The formation of nanoparticles can be accomplished by either chemical synthesis or pulsed laser ablation in a liquid. The present disclosure reveals the importance of controlling the conductivity of the dispersion medium during pulsed laser ablation in a liquid to control the particle size of the nanoparticles. The present disclosure also reveals the importance of adjusting and maintaining the conductivity in a range of 25 μS/cm or less during storage of the nanoparticles and just prior to performing bioconjugation reactions. The control of conductivity is an important process for maintaining the nanoparticles as a stable non-aggregated colloidal suspension in a dispersion medium.
Abstract:
Disclosed is a method for making a colloidal suspension of precious metal nanoparticles. The method comprises providing a target material comprising a precious metal in a liquid dispersion medium in an ablation container. The dispersion medium has an electrical conductivity within a predetermined conductivity range. Laser pulses are used to generate the nanoparticles from the target in the container. While generating the nanoparticles the electrical conductivity of the dispersion medium is monitored and maintained within the predetermined range and thereby the generated nanoparticles are produced within a predetermined size range. The generated nanoparticles are used to form a colloidal suspension.
Abstract:
The present disclosure is directed to an in-liquid laser-based method for fabricating a solution of fine particles of amorphous solid medicinal compounds, a solution of fine particles of amorphous medicinal agents made with the method, and fine particles made with the method. By using a target solidified via a phase transition process to covert an initial crystalline structure into an amorphous solid, technical difficulties with handling a hydraulically-pressed target are overcome. The laser-based ablation process produces amorphous solid medicinal compound fine particles, which improves the bioavailability and solubility of the medicinal compound. The improvement results from a combination of: disordered crystalline structure and enlarged relative surface area by particle size reduction. The laser based method may be carried out with ultrashort pulsed laser systems, or with UV nanosecond lasers. Results obtained with an ultrashort near IR laser and a UV nanosecond laser show formation of amorphous solid curcumin fine particles.