Abstract:
A method for manufacturing an electrowetting display unit includes the following steps. A first substrate and a second substrate are provided. A first conductive layer is disposed on one side of the first substrate. A second conductive layer is disposed on one side of the second substrate. A polymer layer, which includes a siloxane containing a light-induced cross linkable group and a Si—H bond, is disposed on the first conductive layer. The molecular weight of the monomer of the siloxane is equal to or greater than 5000. A part of the polymer layer is exposed to a light so as to form a plurality of hydrophobic sections. A hydrophilic section is developed by treating a developing agent. The hydrophilic section and the plurality of hydrophobic sections form a pattern layer together. Polar liquid and non-polar liquid are disposed between the pattern layer and the second conductive layer.
Abstract:
A microbial carrier and a device for treating wastewater are provided. The microbial carrier includes a bacteriophilic material and a plurality of foam cells, wherein the foam cells are disposed in the bacteriophilic material. The bactericidal material is a reaction product of a composite, wherein the composition includes a hydrophobic polyvinyl alcohol and a cross-linking agent, wherein the surface energy of the hydrophobic polyvinyl alcohol is 30 mJ/m2 to 58 mJ/m2.
Abstract:
A solar cell module is provided. The solar cell module includes a first substrate, a second substrate opposite the first substrate, a cell unit disposed between the first and second substrates, a first thermosetting resin layer disposed between the cell unit and the first substrate, a first thermoplastic resin layer disposed between the cell unit and the first thermosetting resin layer, a second thermosetting resin layer disposed between the cell unit and the second substrate, and a second thermoplastic resin layer disposed between the cell unit and the second thermosetting resin layer.
Abstract:
The present disclosure provides an enhanced wavelength converting structure. The enhanced wavelength converting structure includes a first crosslinked cholesteric liquid crystal layer and a plurality of first quantum dots dispersed in the first crosslinked cholesteric liquid crystal layer. When a first light is incident into the enhanced wavelength converting structure, the plurality of first quantum dots are excited and emit a second light of a wavelength different from a wavelength of the first light, and the second light is toned up via multiple reflections in the first crosslinked cholesteric liquid crystal layer. The present disclosure further provides a luminescent film and a display backlighting unit.
Abstract:
The disclosure provides an electro-wetting element, including: a first substrate and a second substrate, wherein the first substrate and the second substrate are disposed oppositely; a first electrode formed on the first substrate; a photoreactive layer formed on the first electrode, wherein the photoreactive layer includes a reversible photoreactive material; a second electrode formed on the first substrate or the second substrate; and a polar fluid and a non-polar fluid disposed between the first substrate and the second substrate.
Abstract:
A hydrophobic polyvinyl alcohol and a method for preparing hydrophobic polyvinyl alcohol are provided. The hydrophobic polyvinyl alcohol includes a first repeat unit represented by Formula (I), a second repeat unit represented by Formula (II), and a third repeat unit represented by Formula (III)
wherein R1 is —Si(R2)3,
R2 is independently C1-6 alkoxy group, C6-18 alkyl group, or C6-22 alkenyl group, and at least one R2 is C6-18 alkyl group or C6-22 alkenyl group; R3 and R4 are independently C6-18 alkyl group or C6-22 alkenyl group; j is 3 to 7; and k is 1 to 30.
Abstract:
A method for manufacturing a quantum dot and a quantum dot are provided. The method includes adding a core semiconductor precursor solution into a seed composition solution. The seed composition solution includes a seed composition, and the seed composition is a dendrimer-metal nanoparticle composite. The core semiconductor precursor solution includes a first semiconductor ion and a second semiconductor ion. The method also includes carrying out a first synthesis reaction to form a core semiconductor material wrapping the seed composition. The core semiconductor material is formed by combining the first semiconductor ion with the second semiconductor ion.
Abstract:
A method for manufacturing an electrowetting display unit includes the following steps. A first substrate and a second substrate are provided. A first conductive layer is disposed on one side of the first substrate. A second conductive layer is disposed on one side of the second substrate. A polymer layer, which includes a siloxane containing a light-induced cross linkable group and a Si—H bond, is disposed on the first conductive layer. The molecular weight of the monomer of the siloxane is equal to or greater than 5000. A part of the polymer layer is exposed to a light so as to form a plurality of hydrophobic sections. A hydrophilic section is developed by treating a developing agent. The hydrophilic section and the plurality of hydrophobic sections form a pattern layer together. Polar liquid and non-polar liquid are disposed between the pattern layer and the second conductive layer.