Abstract:
A random access memory comprises a first circuit (130) configured to receive a strobe signal (132) and provide pulses in response to transitions in the strobe signal. The random access memory comprises a second circuit (100, 100n) configured to receive the strobe signal to latch data into the second circuit, and to receive the pulses to latch the latched data into the second circuit after the transitions in the strobe signal.
Abstract:
Ein Verfahren zum Rückführen einer Ladung bei einer Speichervorrichtung, das folgende Schritte aufweist: Durchführen einer ersten Auffrischoperation, die ein erstes Array von Bitleitungserfassungsverstärkern betrifft; Übertragen von Ladung von Leistungsleitungen des ersten Arrays von Bitleitungserfassungsverstärkern zu Leistungsleitungen eines zweiten Arrays von Bitleitungserfassungsverstärkern, die bei einer zweiten Auffrischoperation betroffen sind, die nachfolgend zu der ersten Auffrischoperation durchgeführt wird; und Übertragen von Ladung von Leistungsleitungen des ersten Arrays von Bitleitungserfassungsverstärkern zu Leistungsleitungen eines dritten Arrays von Bitleitungserfassungsverstärkern, die bei einer dritten Auffrischoperation betroffen sind, die nachfolgend zu der zweiten Auffrischoperation durchgeführt wird, wobei das Verfahren ferner ein Durchführen zumindest einer Zwischenauffrischoperation zwischen der ersten und der zweiten Auffrischoperation aufweist, wobei eine Ladung nicht von Leistungsleitungen des Arrays von Bitleitungserfassungsverstärkern zu Leistungsleitungen eines Arrays von Bitleitungserfassungsverstärkern übertragen wird, die bei der Zwischenauffrischoperation betroffen sind.
Abstract:
Buffer circuits and techniques that reduce skew between rising and falling times of output data as process conditions vary are provided. One or more process-dependent current sources may be utilized to compensate for process variations by supplementing the current drive of transistors used to precharge (PMOS) or discharge (NMOS) an output node of a secondary (e.g., inverter) stage of the buffer circuit.
Abstract:
A duty cycle detector comprising a first circuit configured to receive clock cycles including a first level and a second level. The first circuit is configured to obtain a first value based on the length of the first level and to obtain second and third values based on the length of the second level. The first value is compared to the second and the third values to determine a duty cycle range of the clock cycles.
Abstract:
A circuit for latching data into a memory includes a receiver, a delay, and a selector. The receiver is configured for receiving a data signal, and the delay is configured to delay the data signal to provide a delayed data signal. The selector is configured to receive the delayed data signal, a data strobe signal, and an inverted data strobe signal and provide a first strobe signal and a second strobe signal in response to the delayed data signal, the data strobe signal, and the inverted data strobe signal. Rising edge data is latched into the memory in response to the first strobe signal and falling edge data is latched into the memory in response to the second strobe signal.
Abstract:
Techniques and circuit configurations for fine phase adjustments, for example, in a delay-locked loop (DLL) circuit are provided. Multiple phase signals may be generated from a single current source by selectively coupling one or more delay elements to an output node of the current source. The delay elements may vary the timing of a signal generated by switching the current source.
Abstract:
An input circuit including a first circuit, a second circuit, and a third circuit. The first circuit is configured to receive a first signal and a second signal and to sample the first signal via the second signal and provide signal samples of the first signal. The second circuit is configured to receive a third signal and the signal samples and to update a second circuit output signal via the third signal and provide the updated second circuit output signal. The third circuit is configured to receive a clock signal and the second signal and to provide the third signal. The third circuit is also configured to synchronize edges in the third signal to edges in the second signal and edges in the clock signal.
Abstract:
A duty cycle corrector, including a first, second circuit and a third circuit is disclosed. The third circuit is configured to obtain a threshold value in response to charge flow that is regulated by the first circuit and the second circuit, wherein the first circuit is configured to receive a clock signal and change the charge flow at a first transition of the clock signal. The second circuit is configured to change the charge flow at a second transition of the clock signal. The first circuit and the second circuit are configured to change the charge flow in response to obtaining the threshold value.