2.
    发明专利
    未知

    公开(公告)号:DE69830141T2

    公开(公告)日:2006-01-19

    申请号:DE69830141

    申请日:1998-12-03

    Abstract: An improved method for forming semiconductor substrates using BSG avoids the problems associated with conventional TEOS hard mask techniques. The methods comprises providing a semiconductor substrate 1 and applying a conformal layer of borosilicate glass (BSG) 40 on the substrate. A photoresist layer 60 is then formed over the BSG layer and pattern to expose a desired portion of a layer underlying the photoresist layer. Anisotropical etching is then performed through the exposed portion of the underlying layer, through any other layers lying between the photoresist layer and the semiconductor substrate, and into the semiconductor substrate, thereby forming a trench in the semiconductor substrate. Preferably, one or more dielectric layers 10, 20 are present on the substrate surface prior to application of the BSG layer. One or more chemical barrier and/or organic antireflective coating layers 50 may be applied over the BSG layer between the BSG layer and the photoresist layer. The method is especially useful for forming deep trenches in silicon substrates with pad dielectric layers.

    3.
    发明专利
    未知

    公开(公告)号:DE69830141D1

    公开(公告)日:2005-06-16

    申请号:DE69830141

    申请日:1998-12-03

    Abstract: An improved method for forming semiconductor substrates using BSG avoids the problems associated with conventional TEOS hard mask techniques. The methods comprises providing a semiconductor substrate 1 and applying a conformal layer of borosilicate glass (BSG) 40 on the substrate. A photoresist layer 60 is then formed over the BSG layer and pattern to expose a desired portion of a layer underlying the photoresist layer. Anisotropical etching is then performed through the exposed portion of the underlying layer, through any other layers lying between the photoresist layer and the semiconductor substrate, and into the semiconductor substrate, thereby forming a trench in the semiconductor substrate. Preferably, one or more dielectric layers 10, 20 are present on the substrate surface prior to application of the BSG layer. One or more chemical barrier and/or organic antireflective coating layers 50 may be applied over the BSG layer between the BSG layer and the photoresist layer. The method is especially useful for forming deep trenches in silicon substrates with pad dielectric layers.

Patent Agency Ranking