Abstract:
A multiple finger off chip driver (OCD) has a single level translator for each of a plurality of PFET fingers and NFET fingers which allow the impedance of the OCD to be varied to match the impedance of a driven load. A plurality of PFET and NFET finger selection devices are used to select various combinations of output FETS and ballast resistor finger combinations to drive an output signal at a desired impedance level. The ballast resistors are scaled in ohmic value to the size of the output finger it is connected to. In this configuration, a constant ratio of FET impedance to ballast resistance is maintained in each drive stage (finger). By selecting various combinations of fingers various driver impedances can be selected.
Abstract:
A circuit and method are provided wherein a receiver receives an input train of pulses. The circuit includes a delay-locked-loop coupled to an output of the receiver. The delay-locked-loop includes a pulse generator responsive to received input train of pulses produced at the output of the receiver for producing first pulses in response to the leading edges of the received input train of pulses and second pulses in response to the trailing edges of received input train of pulses. The leading edge of the first pulse has the same edge type as the leading edge of the second pulse (i.e., the leading edge of the first pulse and the leading edge of the second pulse are either both rising edge types or both falling edges types). The first pulses and the second pulses are combined into a composite input signal comprising the first and second pulses with the leading edge of the first pulse maintaining the same edge type. The delay-locked-loop also includes a variable delay line fed by the composite input signal for producing a composite output train of pulses comprising both the first train of pulses and the second train of pulses after a selected time delay provided by the delay line. The delay-locked-loop is responsive to one of the first train of pulses and the second train of pulses in the composite output train of pulses for selecting the time delay of the variable delay line so as to produce the composite output train of pulses with a predetermined phase relationship to the input train of pulses.
Abstract:
A circuit and method are provided wherein a receiver receives an input train of pulses. The circuit includes a delay-locked-loop coupled to an output of the receiver. The delay-locked-loop includes a pulse generator responsive to received input train of pulses produced at the output of the receiver for producing first pulses in response to the leading edges of the received input train of pulses and second pulses in response to the trailing edges of received input train of pulses. The leading edge of the first pulse has the same edge type as the leading edge of the second pulse (i.e., the leading edge of the first pulse and the leading edge of the second pulse are either both rising edge types or both falling edges types). The first pulses and the second pulses are combined into a composite input signal comprising the first and second pulses with the leading edge of the first pulse maintaining the same edge type. The delay-locked-loop also includes a variable delay line fed by the composite input signal for producing a composite output train of pulses comprising both the first train of pulses and the second train of pulses after a selected time delay provided by the delay line. The delay-locked-loop is responsive to one of the first train of pulses and the second train of pulses in the composite output train of pulses for selecting the time delay of the variable delay line so as to produce the composite output train of pulses with a predetermined phase relationship to the input train of pulses.
Abstract:
PROBLEM TO BE SOLVED: To prevent read-out disturbance from an unselected cell by reading out a written word value stored on a storage node by means of a read transistor via a diode between bit lines. SOLUTION: When a write transistor Tw0 in a gain cell 20 is operated by a write-in word line WLW0, a value of a write-in bit line BLW0 is stored on the storage node SN0. When a read-out word line WLR0 is enabled to work, the read transistor Tr0 to be connected with the storage node SN0 in this case is connected via the diode D0 to a read-out bit line BLR0, so as to read out the stored value. The diode D0 is capable of preventing conductivity in the reverse direction of the read transistor Tr0, thus preventing disturbance from another cell, and also decreasing capacitance of the bit line. The same is the case with the other memory cells.
Abstract:
An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit.
Abstract:
PROBLEM TO BE SOLVED: To provide a method and system, in which operation of and/or access to a particular function of an electronic device can be controlled after the device leaves the control of the manufacturer. SOLUTION: Techniques and systems whereby the operation and/or the access to the particular function of the electronic device cany be controlled after the device leaves the control of the manufacturer are provided. The operation and/or access can be provided based on values stored in non-volatile storage elements, such as electrically programmable fuses (eFUSES). COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a stabilized direct sensing memory architecture which provides Process, Voltage and Temperature(PVT) compensation in a memory array to a direct sense circuit to increase the manufacturing yield thereof, and to extend the operating voltage and temperature ranges thereof independent of manufacturing tolerances. SOLUTION: A single-ended sense amplifier structure has a common source NFET amplifier with an adjustable current source load provided by a PFET. The PFET current source is automatically adjusted to place the NFET amplifier in an operating range to provide maximum amplification of a small signal, superimposed on a bitline precharge voltage. A simulating bias generator circuit provides this operating point adjustment, and realizes a direct, single-ended sensing operation using a small number of transistors.
Abstract:
PROBLEM TO BE SOLVED: To provide a programmable sensing device and a method and a DRAM array for detecting soft errors. SOLUTION: The programmable heavy-ion sensing device for accelerated DRAM soft error detection is provided. From the viewpoint of design, it is desirable to use a DRAM-based alpha particle sensing apparatus as an accelerated on-chip SER test vehicle. The sensing apparatus is provided with a programmable sensing margin, a refresh rate, and a supply voltage for attaining various degrees of SER sensitivity. In addition, a dual-mode DRAM array is proposed so that at least a portion of the array can be used to monitor high-energy particle activities, during a soft-error detection (SED) mode. COPYRIGHT: (C)2009,JPO&INPIT