Abstract:
The architecture and techniques described herein can improve system performance with respect to the following. Communication between two interdependent hardware engines, that are part of pipeline, such that the engines are synchronized to consume resources when the engines are done with the work. Reduction of the role of software/firmware from feeding each stage of the hardware pipeline when the previous stage of the pipeline has completed. Reduction in the memory allocation for software-initialized hardware descriptors to improve performance by reducing pipeline stalls due to software interaction.
Abstract:
The architecture and techniques described herein can improve system performance with respect to the following. Communication between two interdependent hardware engines, that are part of pipeline, such that the engines are synchronized to consume resources when the engines are done with the work. Reduction of the role of software/firmware from feeding each stage of the hardware pipeline when the previous stage of the pipeline has completed. Reduction in the memory allocation for software-initialized hardware descriptors to improve performance by reducing pipeline stalls due to software interaction.