Abstract:
Apparatuses and methods are provided for mitigating radio frequency interference and electromagnetic compatibility issues caused by the resonance of metal planes of a circuit board. A method for controlling impedance at an edge of a circuit board includes creating a cut at an edge of a plane of the circuit board. The cut extends from the edge of the plane to a point at a depth into the plane. The method can further include creating a cut pattern in the edge of the plane by repeating the cut along the edge of the plane such that an impedance of the plane at the depth is different, or lower, than an impedance of the plane at the edge of the plane. Other aspects are described.
Abstract:
Methods and systems may provide for a gyratory sensing system (GSS) for extending the human machine interface (HMI) of an electronic device, particularly small form factor, wearable devices. The gyratory sensing system may include a gyratory sensor and a rotatable element to engage the gyratory sensor. The rotatable element may be sized and configured to be easily manipulated by hand to extend the HMI of the electronic device such that the functions of the HMI may be more accessible. The rotatable element may include one or more rotatable components, such as a body, edge or face of a smart watch, that each may be configured to perform a function upon rotation, such as resetting, selecting, and/or activating a menu item.
Abstract:
A system for board-to-board interconnect is described herein. The system includes a first printed circuit board (PCB) having a first recess along a first edge of the first PCB that exposes a first solder pad on a layer of the first PCB. The system also includes a second PCB having a second recess along a second edge of the second PCB that exposes a second solder pad on a layer of the second PCB. The second recess is complementary to the first recess to allow the first PCB to mate with the second PCB. The first solder pad is aligned with the second solder pad when the first PCB is mated with the second PCB. The system additionally includes an assembly configured to electronically couple the first solder pad with the second solder pad.
Abstract:
A system for board-to-board interconnect is described herein. The system includes a first printed circuit board (PCB) having a first recess along a first edge of the first PCB that exposes a first solder pad on a layer of the first PCB. The system also includes a second PCB having a second recess along a second edge of the second PCB that exposes a second solder pad on a layer of the second PCB. The second recess is complementary to the first recess to allow the first PCB to mate with the second PCB. The first solder pad is aligned with the second solder pad when the first PCB is mated with the second PCB. The system additionally includes an assembly configured to electronically couple the first solder pad with the second solder pad.
Abstract:
Methods and systems may provide for a gyratory sensing system (GSS) for extending the human machine interface (HMI) of an electronic device, particularly small form factor, wearable devices. The gyratory sensing system may include a gyratory sensor and a rotatable element to engage the gyratory sensor. The rotatable element may be sized and configured to be easily manipulated by hand to extend the HMI of the electronic device such that the functions of the HMI may be more accessible. The rotatable element may include one or more rotatable components, such as a body, edge or face of a smart watch, that each may be configured to perform a function upon rotation, such as resetting, selecting, and/or activating a menu item.
Abstract:
A semiconductor apparatus includes a floating-bridge interconnect that couples two semiconductive devices that are arranged across a middle semiconductive device. The floating-bridge interconnect can be semiconductive material such as a silicon bridge, or it can be an organic bridge. Computing functions required in one of the two semiconductive devices can be off-loaded to any of the floating-bridge interconnect or the other of the two semiconductive devices.
Abstract:
Described is an apparatus which comprises: a pre-driver coupled to a transmitter, the transmitter having a differential output; and a tuning circuit operable to couple to the differential output to tune the pre-driver of the transmitter according to a common mode noise signature of a common mode signal derived from the differential output.
Abstract:
Methods and systems may provide for a gyratory sensing system (GSS) for extending the human machine interface (HMI) of an electronic device, particularly small form factor, wearable devices. The gyratory sensing system may include a gyratory sensor and a rotatable element to engage the gyratory sensor. The rotatable element may be sized and configured to be easily manipulated by hand to extend the HMI of the electronic device such that the functions of the HMI may be more accessible. The rotatable element may include one or more rotatable components, such as a body, edge or face of a smart watch, that each may be configured to perform a function upon rotation, such as resetting, selecting, and/or activating a menu item.
Abstract:
Apparatuses and methods are provided for mitigating radio frequency interference and electromagnetic compatibility issues caused by the resonance of metal planes of a circuit board. A method for controlling impedance at an edge of a circuit board includes creating a cut at an edge of a plane of the circuit board. The cut extends from the edge of the plane to a point at a depth into the plane. The method can further include creating a cut pattern in the edge of the plane by repeating the cut along the edge of the plane such that an impedance of the plane at the depth is different, or lower, than an impedance of the plane at the edge of the plane. Other aspects are described.
Abstract:
Embodiments include semiconductor packages and method of forming the semiconductor packages. A semiconductor package includes a package substrate on a substrate, a die on the package substrate, and a conductive stiffener over the package substrate and the substrate. The conductive stiffener surrounds the package substrate, where the conductive stiffener has a top portion and a plurality of sidewalls, and where the top portion is directly disposed on the package substrate, and the sidewalls are vertically disposed on the substrate. The semiconductor package also includes the substrate that has a plurality of conductive pads, where the conductive pads are conductively coupled to a ground source. The conductive stiffener may conductively couple the package substrate to the conductive pads of the substrate. The top portion may have a cavity that surrounds the die, where the top portion is directly disposed on a plurality of outer edges of the package substrate.