Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a wireless communication transmitter employs a control process to implement numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. By monitoring a plurality of parameters associated with the analog radio, such as temperature, bias current or the like, enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters may be implemented.
Abstract:
A method and apparatus for estimating and correcting baseband frequency error in a receiver. In one embodiment, an equalizer performs equalization on a sample data stream and generates filter tap values based on the equalization. An estimated frequency error signal is generated based on at least one of the filter tap values. A rotating phasor is generated based on the estimated frequency error signal. The rotating phasor signal is multiplied with the sample data stream to correct the frequency of the sample data stream. In another embodiment, a channel estimator performs channel estimation and generates Rake receiver finger weights based on at least one of the finger weights. An estimated frequency error signal is generated based on at least one of the finger weights.
Abstract:
A digital baseband (DBB) radio frequency (RF) receiver (105) includes a digital high pass filter compensation (HPFC) module (205) used to suppress group delay variation distortion caused by using low cost analog high pass filters (HPFO) (175A, 175B, 185A, 185B) in the receiver. The digital HPFC module (205) reduces a cutoff frequency, established by the HPFs for the real and imaginary signal component frequency domain responses by providing a first compensation signal having a first predetermined value (K1). The digital HPFC module adjusts the gain of the high pass response of the real and imaginary signal component frequency domains by providing a second compensation signal having a second predetermined value (K2).
Abstract:
A method and system for determining at least one DC offset compensation value used to suppress carrier leakage occurring on real (184) and imaginary (186) signal paths in an analog radio transmitter when a significant temperature change (168) in the transmitter is detected. At least one DC offset signal having a level that corresponds to the at least one DC offset compensation value is provided to a digital DC offset compensation module which adjusts the DC level of at least one of the real and imaginary signal paths (184 and 186).
Abstract:
A method and apparatus that reduces the amount of constellation rotation due to power amplifier (PA 125) insertion phase variation during activation (i.e., turn on) of a transmitter (100). This is accomplished by applying an instantaneous phase rotation (175) during the transmitter turn on at digital baseband (165, 170) to counteract and minimize unwanted phase variations.
Abstract:
A step-size estimator for controlling the step-size of an adaptive equalizer incorporated in a transceiver, (e.g., a wireless transmit/receive unit (WTRU)). The step-size estimator updates at least one adaptive equalizer tap used by the adaptive equalizer based on an apparent speed of a channel established between the transceiver and another transceiver. The step-size estimator includes a speed estimator, a signal-to-noise ratio (SNR) averager and a step-size mapping unit. The speed estimator is used to estimate the apparent speed of the channel, (i.e., the observed and/or measured rate of change of the channel impulse response). The SNR averager generates a common pilot channel (CPICH) SNR estimate. The step-size mapping unit uses the speed estimate and the CPICH SNR estimate to generate a step-size parameter, µ, and a filter taps leakage factor parameter, a, used by the adaptive equalizer to update the filter tap coefficient.
Abstract:
Method and apparatus for adjusting the frequency of a VCO (46) at a receiver to synchronize the receiver with the transmitter by correlating (66) a synchronization code channel with training sequences to estimate positive and negative offsets (34, 36, 38) which are employed to estimate an error, which is then filtered. The filter (42) output provides voltage controlling the VCO. The same technique may be employed to control a numeric controlled oscillator (NCO) (46).
Abstract:
A method and system for performing initial cell search in wireless communication system wherein unsuitable cells are excluded is disclosed. Stored frequencies are searched exhaustively and initial frequencies are search non-exhaustively. Initial frequencies may be searched exhaustively in certain circumstances. When performing exhaustive initial cell searches, primary synchronization codes that lead to unsuitable cells are excluded from subsequent initial cell searches performed on the same frequency.
Abstract:
A method and apparatus for performing a power efficient cell search in a multi-cell wireless communication system are disclosed. A wireless transmit/receive unit (WTRU) having a memory that stores a cell identification list of prioritized previously top-ranked cell identities (IDs) is used to perform the cell search. A primary synchronization code (PSC) correlation peak location on a received signal is selected. A common pilot channel (CPICH) correlation value is determined by non-coherent integration of a local signal created based on a first cell ID on the cell identification list to the received signal. If the CPICH correlation value is greater than a noise threshold, thus indicating that the first cell ID is a newly found cell ID, or if a last cell ID in the cell identification list is reached, an additional determination is made as to whether there is more than one cell ID on the list having the same timing.
Abstract:
An adaptive equalizer including an equalizer filter and a tap coefficients generator used to process a sample data stream derived from a plurality of received signals is disclosed. The tap coefficients generator includes an equalizer tap update unit, a vector norm square estimator, an active taps mask generator, a switch and a pilot amplitude reference unit used to minimize the dynamic range of the equalizer filter. A dynamic mask vector is used to mask active taps generated by the equalizer tap update unit when an unmasked signal output by the equalizer filter is selected by the switch to generate an error signal fed to the equalizer tap update unit. A fixed mask vector is used to mask active taps generated by the equalizer tap update unit when a masked signal output by the equalizer filter is used to generate the error signal.