Abstract:
An adaptive equalizer including an equalizer filter and a tap coefficients generator used to process a sample data stream derived from a plurality of received signals is disclosed. The tap coefficients generator includes an equalizer tap update unit, a vector norm square estimator, an active taps mask generator, a switch and a pilot amplitude reference unit used to minimize the dynamic range of the equalizer filter. A dynamic mask vector is used to mask active taps generated by the equalizer tap update unit when an unmasked signal output by the equalizer filter is selected by the switch to generate an error signal fed to the equalizer tap update unit. A fixed mask vector is used to mask active taps generated by the equalizer tap update unit when a masked signal output by the equalizer filter is used to generate the error signal.
Abstract:
A receiver (fig.2) comprises a plurality of antenna elements (210) for receiving a data signal. Each antenna element (210) has a plurality of Rake fingers (200). Each Rake finger (200) processes a received multipath component of the received data signal of its antenna element (210) by applying a complex weight gain to that received multipath component. A complex weight gain generator (205) determines the complex weight gain for each Rake finger (200) for each antenna element (210) using an input from all the Rake fingers (200). A summer (225) combines an output of each Rake finger (200) to produce an estimate of the data signal.
Abstract:
A receiver which suppresses inter-cluster multipath interference by processing an impulse channel response consisting of two multipath clusters, each cluster having groups of signals with multiple delays. In one embodiment, the receiver includes a single antenna and parallel-connected delay units used to align the groups of signals before being input into respective sliding window equalizers. The outputs of the equalizers are combined at chip level via a combiner which provides a single output. In another embodiment, a Cluster Multipath Interference Suppression (CMIS) circuit is incorporated into the receiver. The CMIS circuit includes a hard decision unit and a plurality of signal regeneration units to generate replicas of the multipath clusters. The replicas are subtracted from the respective outputs of the delay units and the results are input to the respective sliding window equalizers. In another embodiment, multiple antennas are used to receive and process the clusters.
Abstract:
A channel estimation method which reduces the strain on resources of a RAKE receiver using a complex weight gain (CWG) algorithm. In one embodiment, a non-adaptive algorithm is used to average blocks of pilot symbols from several slots (320). In another embodiment, an adaptive algorithm implements sliding window averaging or a recursive filter. Using a CWG algorithm (325) reduces the memory and processor requirements of the RAKE receiver.
Abstract:
A simple and robust CTL is used for time tracking of multipath components of a spread spectrum signal transmitted over a wireless multipath fading channel. A digital code-tracking loop includes the implementations of despreading early and late data samples by use of a pseudonoise sequence, an error signal output generated by the despreading, and adjustment for a plurality of on-time, early and late samples, a data rate of a control signal provided as a fractional proportion of a data rate of error signals.
Abstract:
A sliding window based data estimation is performed. An error is introduced in the data estimation to the communication modeling the relationship between the transmitted and received signals. To compensate for an error in the estimated data, the data that was estimated in a previous sliding window step (58) or terms that would otherwise be truncated as noise are used. These techniques (50, 52, 54, 56. 58, 60, 62 and 64) allow for data to be truncated prior to further processing reducing the data of the window.
Abstract:
A receiver or an integrated circuit (IC) incorporated therein includes a fast Fourier transform (FFT)-based (or hybrid FFT-based) sliding window block level equalizer (BLE) for generating equalized samples. The BLE includes a noise power estimator, first and second channel estimators, an FFT-based chip level equalizer (CLEQ) and a channel monitor unit. The noise power estimator generates a noise power estimate based on two diverse sample data streams. The channel estimators generate respective channel estimates based on the sample data streams. The channel monitor unit generates a first channel monitor signal including truncated channel estimate vectors based on the channel estimates, and a second channel monitor signal which indicates an approximate rate of change of the truncated channel estimate vectors. The FFT-based CLEQ generates the equalized samples based on the noise power estimate, one-block samples of the first and second sample data streams, the channel estimates and the monitor signals.
Abstract:
A block linear equalizer (BLE) using an approximate Cholesky decomposition is disclosed. The BLE includes channel estimators, a channel monitor unit, a noise power estimator, a parameter selection unit and an approximate Cholesky processor. The channel estimator generates a channel estimate vector from received samples. The channel monitor unit generates a first channel monitor signal for a truncated channel estimate vector and a second channel monitor signal. The noise power estimator estimates a noise power of the received samples. The parameter selection unit selects parameters for approximate Cholesky decomposition based on the first and second channel monitor signals. The approximate Cholesky processor performs block linear equalization on the received samples based on approximate Cholesky decomposition.
Abstract:
An improved system and method for estimating one or more parameters, such as amplitude and signal-to-noise ratio, of a received signal, such as an M-QAM or q-ASK signal, is set forth herein. A first embodiment of the invention estimates the amplitude of an M- QAM signal based upon known or ascertainable phase information regarding a plurality of transmitted symbols. A respective set of received symbols corresponding to the plurality of transmitted symbols is recovered (101). Each of the plurality of received symbols is multiplied by a complex unit vector with a phase that is opposite in sign to the complex transmitted data symbol to generate a set of products. The set of products is summed (105), and the real part of the sum of products is then determined. The absolute values of the known transmitted symbols are summed to generate a total magnitude value. The real part of the sum of products is divided (111) by the sum of transmitted magnitude values to generate an estimate of the amplitude of the M-QAM signal.
Abstract:
The present invention is related to a method and apparatus for estimating signal-to-noise ratio (SNR) based on dedicated physical channel (DPCH) pilot symbols in a wireless communication system. A receiver receives a DPCH transmission and a despreader despreads the received DPCH transmission. A selector selects pilot symbols in the despread DPCH transmission. A signal power estimator estimates signal power based on the pilot symbols, and a noise power estimator estimates noise power based on the received DPCH transmission. A SNR estimator estimates an SNR based on the signal power estimation and the noise power estimation. The noise power estimator may calculate the noise power estimation either based only on pilot symbols or based on both pilot symbols and non-pilot symbols. The DPCH transmission may be transmitted using more than one antenna for transmit diversity.