Abstract:
A method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless orthogonal frequency division multiplexing (OFDM) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless OFDM communication system includes a transmitter which steganographically embeds digital information in an OFDM communication signal and wirelessly transmits the OFDM communication signal. The system further includes a receiver which receives the OFDM communication signal and extracts the steganographically embedded digital information from the received OFDM communication signal.
Abstract:
In an orthogonal frequency division multiplexing (OFDM) system, a frequency domain channel estimate for non-nullified subcarriers is converted to a time domain channel estimate. The number of taps L of a channel model is determined based on the time domain channel estimate. An improved time domain channel estimate is obtained by computing L tap coefficients of the channel model from the frequency domain channel estimate. An improved frequency domain channel estimate is obtained by performing a Fourier transform on the improved time domain channel estimate. Alternatively, a time domain truncation method may be performed selectively only if the signal-to-noise ratio (SNR) is below a threshold. Alternatively, a frequency domain channel estimate for pilot subcarriers are converted to a time domain channel estimate and an improved frequency domain channel estimate is obtained based on the number of pilot subcarriers and a delay spread.
Abstract:
In a wireless communication system, a method and apparatus for noise estimation of a received OFDM communication signal, wherein the signal comprises a data frame with a preamble having at least one long training field (LTF) containing two identical OFDM symbols comprise examining the LTF for identical OFDM symbols. The noise power in the signal is estimated and the received signal power is measured. The signal to noise ratio is calculated and the signal power is determined by subtracting the noise power from the signal noise.
Abstract:
A method and apparatus for optimizing the system capacity of an Orthogonal Frequency Division Multiplexing (OFDM) system that uses with Multiple-Input Multiple-Output (MIMO) antennas. In a receiver, a target quality of service (QoS) metric and reference data rate are set. The target QoS metric may be set to a predetermined value and/or may be adjusted dynamically with respect to packet error rate (PER) by a slow outer-loop control processor. The QoS of received signals are measured and compared to the target QoS. Depending on the comparison, the receiver generates a channel quality indicator (CQI) which is sent back to the transmitting transmitter. The CQI is a one or two bit indicator which indicates to the transmitter to disable, adjust or maintain data transmission rates of particular sub-carriers, groups of sub-carriers per transmit antenna, or groups of sub-carriers across all transmit antennas. At the transmitter, the transmitted data rate is disabled, adjusted or maintained. At the receiver, the target QoS metric and reference data rate are adjusted accordingly. This process is repeated for each data frame of each sub-carrier group.
Abstract:
The present invention is related to a method and system for optimization of channel estimation and synchronization in an Orthogonal Frequency Division Multiplexing (OFDM) Multiple-Input Multiple-Output (MIMO) wireless communication system. In accordance with the present invention, all of the training sequences are simply constructed based on a basic code by cyclically shifting the basic code. The training sequences are transmitted from different antennas in parallel without performing inverse fast Fourier transform. As a result, there is no peak-to-average ratio problem. Channel estimation is performed in each receiver based on the samples before fast Fourier transform and the maximum-likelihood estimate of channel response in time domain is then mapped into the frequency domain. The channel estimation is not only very simple in implementation, but also very efficient in computation.
Abstract:
A method and apparatus for de-mapping a symbol modulated by a high order quadrature amplitude modulation (QAM) are disclosed. A transmitting wireless transmit/receive unit (WTRU) maps N input bits to one of 2N symbols in a 2N-QAM constellation. A receiving WTRU receives a signal and generates a sample of the received signal. A soft bit value of the most significant bit (MSB) is calculated based on a value of the sample. A magnitude of the soft bit value of the MSB is subtracted from a threshold. The threshold is initially set with respect to the QAM order, N. A soft bit value of the next MSB is calculated based on the subtraction results. The calculation and subtraction steps are repeated for the next MSB until soft bit values of all the remaining bits are obtained while diving the threshold by 2 each iteration.
Abstract:
A method and apparatus for combining space-frequency block coding (SFBC), spatial multiplexing (SM) and beamforming in a multiple-input multiple-output (MIMO) orthogonal frequency division mutliplexing (OFDM) system. The system inlcudes a transmitter (110) with a plurality of transmit antennas (126) and a receiver (130) with a plurality of receive antennas (128). The transmitter generates generates at least one data stream and plurality of spatial streams (118). The number of generated spatial streams is based on the number of the transmit antennas and the number of the receive antennas. The transmitter determines a transmission scheme in accordance with at least one of SFBC (112), SM (114), and beam forming (122). The transmitter transmits data in the data stream to the receiver based on the selected transmission scheme.
Abstract:
The present invention is related to a method and system for transmit power control in a multiple-input multiple-output (MIMO) wireless communication system. Both a transmitter and a receiver comprise multiple antennae for transmission and reception. The transmitter comprises a power allocation unit for controlling transmit power based on a feedback received from the receiver. The receiver comprises a channel estimator and a singular value decomposition (SVD) unit. The channel estimator generates a channel matrix from a signal received from the transmitter and the SVD unit decomposes the channel matrix into D, U and V matrices. The receiver sends a feedback generated based on output from the SVD unit to the transmitter for controlling the transmit power. The feedback may be one of an eigenvalue, a transmit power level or a power control bit or command. A hybrid scheme for selecting one of them based on channel condition may be implemented.
Abstract:
A system, components and methods provide FEC decoding in a wireless communication system in which signal to noise ratio estimation is used for scaling (18) information captured by a demodulator (14) in processing received wireless communication signals (12). A preferred wireless transmit unit (WRTU) has a channel rate estimation device (23) configured to process the received communication signals for the particular communication channel and to produce channel change rate estimates. A signal to noise ratio (SNR) estimation device (16) of the WRTU is configured to produce SNR estimates based on observation windows of a calculated number of samples of the received signal where the number of samples used for each observation window is calculated (25) as a function of the channel change rate estimates produced by the channel rate estimation device (23).
Abstract:
A multiple-input multiple-output (MIMO) receiver includes a MIMO decoder, a pre-scaling unit, a demapper, and a post-scaling unit. The MIMO decoder performs a MIMO decoding on received signals to decouple a plurality of symbols transmitted via a plurality of data streams. Both pre-demapping scaling and post-demapping scaling are performed to improve the performance of the receiver. A pre-scaling coefficient is applied to the symbols by the pre-scaling unit to generate pre-scaled symbols. The pre-scaled symbols are converted to soft bits by the demapper. The post-scaling unit then applies a post-scaling coefficient to the soft bits. The post-scaling coefficient is a signal-to-interference and noise ratio (SINR). Cross interference is taken into account in post-demapping scaling to obtain more accurate soft bits for subsequent decoding. The present invention is applicable to both a multi-carrier system, (such as orthogonal frequency division multiplexing (OFDM)), and a single carrier system.