Abstract:
The present invention is related to a method and apparatus for implementing space frequency block coding (SFBC) in an orthogonal frequency division multiplexing (OFDM) wireless communication system. The present invention is applicable to both a closed loop mode and an open loop mode. In the closed loop mode, power loading and eigen-beamforming are performed based on channel state information (CSI). A channel coded data stream is multiplexed into two or more data streams. Power loading is performed based on the CSI on each of the multiplexed data streams. SFBC encoding is performed on the data streams for each of the paired subcarriers. Then, eigen-beamforming is performed based on the CSI to distribute eigenbeams to multiple transmit antennas. The power loading may be performed on two or more SFBC encoding blocks or on each eigenmodes. Additionally, the power loading may be performed across subcarriers or subcarrier groups for weak eigenmodes.
Abstract:
A system and method wireless communication determines received signal timing deviation which is used to generate a timing advance for adjusting User Equipment (UE) transmissions. An adaptive threshold for measuring the timing deviation is set based on the energy level of received UE signals. UE signal samples which exceed the threshold are evaluated to determine timing deviation.
Abstract:
A system and method wireless communication determines received signal timing deviation which is used to generate a timing advance for adjusting User Equipment (UE) transmissions. An adaptive threshold for measuring the timing deviation is set based on the energy level of received UE signals. UE signal samples which exceed the threshold are evaluated to determine timing deviation.
Abstract:
A system and method wireless communication determines received signal timing deviation which is used to generate a timing advance for adjusting User Equipment (UE) transmissions. An adaptive threshold for measuring the timing deviation is set based on the energy level of received UE signals. UE signal samples which exceed the threshold are evaluated to determine timing deviation.
Abstract:
A relay node, RN, and a method implemented in the RN for receiving a relay physical downlink control channel, R-PDCCH, are disclosed. An R-PDCCH transmission is received from an evolved Node B, eNB, in subframe configured by the RN as a multimedia broadcast multicast services, MBMS, single frequency network, MBSFN, subframe, and R-PDCCH bits are decoded, wherein the R-PDCCH bits are mapped first along a frequency domain of an orthogonal frequency division multiplexing, OFDM, symbol and second in a time domain across one or more OFDM symbols.
Abstract:
A system and method wireless communication determines received signal timing deviation which is used to generate a timing advance for adjusting User Equipment (UE) transmissions. An adaptive threshold for measuring the timing deviation is set based on the energy level of received UE signals. UE signal samples which exceed the threshold are evaluated to determine timing deviation.
Abstract:
Methods and apparatus are described for providing compatible mapping for baekhaul control channels, frequency first mapping of control channel elements (CCEs) to avoid relay- physical control format indicator channel (R-PCFICH) and a tree based relay resource allocation to minimize the resource allocation map bits. Methods and apparatus (e.g., relay node (RN devolved Node-B (eNB)) for mapping of the Un downlink (DL) control signals, Un DL positive acknowledgement ( ACK)/negative acknowledgement (NACK), and/or relay-physical downlink control channel (R-PDCCH) (or similar) in the eNB to RN (Un interface) DL direction are described. This includes time/frequency mapping of above-mentioned control signals into resource blocks (RBs) of multimedia broadcast multicast services (MFJMS) single frequency network (MBSFN)-reserved sub-frames in the RN cell and encoding procedures for these. Also described are methods and apparatus for optimizing signaling overheads by avoiding R-PCFICH and minimizing bits needs for resource allocation.
Abstract:
The present invention is related to a method and apparatus for implementing space frequency block coding (SFBC) in an orthogonal frequency division multiplexing (OFDM) wireless communication system. The present invention is applicable to both a closed loop mode and an open loop mode. In the closed loop mode, power loading and eigen-beamforming are performed based on channel state information (CSI). A channel coded data stream is multiplexed into two or more data streams. Power loading is performed based on the CSI on each of the multiplexed data streams. SFBC encoding is performed on the data streams for each of the paired subcarriers. Then, eigen-beamforming is performed based on the CSI to distribute eigenbeams to multiple transmit antennas. The power loading may be performed on two or more SFBC encoding blocks or on each eigenmodes. Additionally, the power loading may be performed across subcarriers or subcarrier groups for weak eigenmodes.
Abstract:
A system and method wireless communication determines received signal timing deviation which is used to generate a timing advance for adjusting User Equipment (UE) transmissions. An adaptive threshold for measuring the timing deviation is set based on the energy level of received UE signals. UE signal samples which exceed the threshold are evaluated to determine timing deviation.