Abstract:
A power semiconductor module includes a first substrate, wherein the first substrate includes aluminum, a first aluminum oxide layer arranged on the first substrate, a conductive layer arranged on the first aluminum oxide layer, a first semiconductor chip, wherein the first semiconductor chip is arranged on the conductive layer and is electrically connected thereto, and an electrical insulation material enclosing the first semiconductor chip, wherein the first aluminum oxide layer is configured to electrically insulate the first semiconductor chip from the first substrate.
Abstract:
A semiconductor device of an embodiment includes a transistor device in a semiconductor die including a semiconductor body. The transistor device includes transistor cells connected in parallel and covering at least 80% of an overall active area at a first surface of the semiconductor body. The semiconductor device further includes a control terminal contact area at the first surface electrically connected to a control electrode of each of the transistor cells. A first load terminal contact area at the first surface electrically connected to a first load terminal region of each of the transistor cells. The semiconductor device further includes a resistor in the semiconductor die and electrically coupled between the control terminal contact area and the first load terminal contact area, and a pn junction diode electrically connected in series with the resistor.
Abstract:
A semiconductor device of an embodiment includes a transistor device in a semiconductor die including a semiconductor body. The transistor device includes transistor cells connected in parallel and covering at least 80% of an overall active area at a first surface of the semiconductor body. The semiconductor device further includes a control terminal contact area at the first surface electrically connected to a control electrode of each of the transistor cells. A first load terminal contact area at the first surface electrically connected to a first load terminal region of each of the transistor cells. The semiconductor device further includes a resistor in the semiconductor die and electrically coupled between the control terminal contact area and the first load terminal contact area.
Abstract:
This disclosure is directed to a dual gate metal oxide semiconductor field effect transistor (MOSFET) device formed in a semiconductor material, as well as circuits and techniques for using the dual gate MOSFET device. In some examples, the dual gate MOSFET device may comprise a first MOSFET formed in the semiconductor material, and a second MOSFET formed in the semiconductor material, wherein the first MOSFET and the second MOSFET are arranged in parallel in the semiconductor material, wherein the first MOSFET and the second MOSFET include a common drain node and a common source node, and wherein the first MOSFET and the second MOSFET define different transfer characteristics.
Abstract:
A molded semiconductor package includes a mold compound, a plurality of leads each having a first end embedded in the mold compound and a second end protruding from a side face of the mold compound, and a semiconductor die embedded in the mold compound and electrically connected, within the mold compound, to the plurality of leads. The second end of each lead of the plurality of leads has a bottom surface facing in a same direction as a bottom main surface of the mold compound. The bottom surface of each lead of the plurality of leads is coplanar with the bottom main surface of the mold compound or disposed in a plane above the bottom main surface of the mold compound so that no lead of the plurality of leads extends below the bottom main surface of the mold compound.
Abstract:
A molded semiconductor package includes a mold compound, a plurality of leads each having a first end embedded in the mold compound and a second end protruding from a side face of the mold compound, and a semiconductor die embedded in the mold compound and electrically connected, within the mold compound, to the plurality of leads. The second end of each lead of the plurality of leads has a bottom surface facing in a same direction as a bottom main surface of the mold compound. The bottom surface of each lead of the plurality of leads is coplanar with the bottom main surface of the mold compound or disposed in a plane above the bottom main surface of the mold compound so that no lead of the plurality of leads extends below the bottom main surface of the mold compound.
Abstract:
A rectifying device includes a power transistor, a gate control circuit and a capacitor structure arranged on a single semiconductor die. The power transistor includes a source or emitter terminal connected to a first terminal of the rectifying device, a drain or collector terminal connected to a second terminal of the rectifying device, and a gate. The gate control circuit is operable to control a gate voltage at the gate of the power transistor based on at least one parameter relating to at least one of a voltage and a current between the first terminal and the second terminal.
Abstract:
An alternator assembly includes an input terminal configured to input an alternating voltage, an output terminal configured to output a rectified voltage, and a gated diode arranged in a load path between the input terminal and the output terminal.
Abstract:
A gated diode in a press-fit housing includes a base configured to be press-fit into an opening of a diode carrier plate and including a pedestal portion with a first flat surface, and a head wire including a head portion with a second flat surface and a wire portion. The base and the head wire form parts of the press-fit housing. The gated diode in the press-fit housing further includes a semiconductor die, a first solder layer engaging and electrically connecting the semiconductor die with the first flat surface of the base, and a second solder layer engaging and electrically connecting the semiconductor die with the second flat surface of the head wire.
Abstract:
A semiconductor arrangement comprises a leadframe comprising at least a first and a second carrier, the first and second carriers being arranged laterally besides each other, at least a first and a second semiconductor die, the first semiconductor die being arranged on and electrically coupled to the first carrier and the second semiconductor die being arranged on and electrically coupled to the second carrier, and an interconnection configured to mechanically fix the first carrier to the second carrier and to electrically insulate the first carrier from the second carrier, wherein the first and second semiconductor dies are at least partially exposed to the outside.