Abstract:
A preferred embodiment includes a method of manufacturing a fuse element that includes forming a polysilicon layer over a semiconductor structure, doping the polysilicon layer with carbon or nitrogen, depositing a metal over the polysilicon layer; and annealing the metal and polysilicon layer to form a silicide in an upper portion of the polysilicon layer.
Abstract:
Programmable devices, methods of manufacture thereof, and methods of programming devices are disclosed. In one embodiment, a programmable device includes a link and at least one first contact coupled to a first end of the link. The at least one first contact is adjacent a portion of a top surface of the link and at least one sidewall of the link. The programmable device includes at least one second contact coupled to a second end of the link. The at least one second contact is adjacent a portion of the top surface of the link and at least one sidewall of the link.
Abstract:
A semiconductor device and a method of making a semiconductor device are disclosed. The method of manufacturing a semiconductor device comprises forming a material layer on a substrate, patterning a first semi-global region with a first main pattern and patterning a second semi-global region with a second main pattern, wherein the first main pattern is different than the second main pattern. The method further comprises introducing a first dummy pattern in the first semi-global region so that a first sidewall area surface density of the first main pattern and the first dummy pattern in the first semi-global region and a second sidewall area surface density of the second main pattern in the second semi-global region are substantially a same density.
Abstract:
A semiconductor device and a method of making a semiconductor device are disclosed. The method of manufacturing a semiconductor device comprises forming a material layer on a substrate, patterning a first semi-global region with a first main pattern and patterning a second semi-global region with a second main pattern, wherein the first main pattern is different than the second main pattern. The method further comprises introducing a first dummy pattern in the first semi-global region so that a first sidewall area surface density of the first main pattern and the first dummy pattern in the first semi-global region and a second sidewall area surface density of the second main pattern in the second semi-global region are substantially a same density.
Abstract:
A preferred embodiment includes a method of manufacturing a fuse element that includes forming a polysilicon layer over a semiconductor structure, doping the polysilicon layer with carbon or nitrogen, depositing a metal over the polysilicon layer; and annealing the metal and polysilicon layer to form a silicide in an upper portion of the polysilicon layer.