Abstract:
A MOS transistor structure for matched operation in weak-inversion or sub-threshold range (e.g. input-pair of operational amplifier, comparator, and/or current-mirror) is disclosed. The transistor structure may include a well region of any impurity type in a substrate (SOI is included). The well-region can even be represented by the substrate itself. At least one transistor is located in the well region, whereby the active channel-region of the transistor is independent from lateral isolation interfaces between GOX (gate oxide) and FOX (field oxide; including STI-shallow trench isolation).
Abstract:
A method for producing a semiconductor component is provided. The method includes providing a semiconductor body with a first surface and a second surface opposite to the first surface, etching an insulation trench from the first surface partially into the semiconductor body, forming a first insulation layer on one or more sidewalls of the insulation trench, processing the second surface by at least one of grinding, polishing and a CMP-process to expose the first insulation layer, and depositing on the processed second surface a second insulation layer which extends to the first insulation layer.
Abstract:
A MOS transistor structure for matched operation in weak-inversion or sub-threshold range (e.g. input-pair of operational amplifier, comparator, and/or current-mirror) is disclosed. The transistor structure may include a well region of any impurity type in a substrate (SOI is included). The well-region can even be represented by the substrate itself. At least one transistor is located in the well region, whereby the active channel-region of the transistor is independent from lateral isolation interfaces between GOX (gate oxide) and FOX (field oxide; including STI-shallow trench isolation).
Abstract:
A one-time programming device includes a field effect semiconductor transistor with a gate or a channel region of the field effect semiconductor transistor including a shape of a footprint so that in an on-state of the field effect semiconductor transistor a critical electrical field is reached within an area of the channel region, a bulk region or a drain region of the field effect semiconductor transistor due to the shape of the footprint resulting in a damage of a p-n junction between the channel region or the bulk region and the drain region of the field effect semiconductor transistor or resulting in a damage of a gate insulation of the field effect semiconductor transistor after a predetermined programming time.
Abstract:
A MOS transistor structure for matched operation in weak-inversion or sub-threshold range (e.g. input-pair of operational amplifier, comparator, and/or current-minor) is disclosed. The transistor structure may include a well region of any impurity type in a substrate (SOI is included). The well-region can even be represented by the substrate itself. At least one transistor is located in the well region, whereby the active channel-region of the transistor is independent from lateral isolation interfaces between GOX (gate oxide) and FOX (field oxide; including STI-shallow trench isolation).
Abstract:
A one-time programming device includes a field effect semiconductor transistor with a gate or a channel region of the field effect semiconductor transistor including a shape of a footprint so that in an on-state of the field effect semiconductor transistor a critical electrical field is reached within an area of the channel region, a bulk region or a drain region of the field effect semiconductor transistor due to the shape of the footprint resulting in a damage of a p-n junction between the channel region or the bulk region and the drain region of the field effect semiconductor transistor or resulting in a damage of a gate insulation of the field effect semiconductor transistor after a predetermined programming time.