Abstract:
Apparatuses, methods and storage medium associated with single pass parallel encryption are disclosed herein. In embodiments, an apparatus for computing may comprise an encryption engine to encrypt a video stream. The encryption engine may comprise a plurality of encryption pipelines to respectively encrypt a plurality of video sub-streams partitioned from the video stream in parallel in a single pass as the video sub-streams are being generated. The plurality of encryption pipelines may use a corresponding plurality of multi-part encryption counters to encrypt the corresponding video sub-streams as the video sub-streams are being generated. Each of the multi-part encryption counters used by one of the encryption pipelines may comprise a sub-portion that remains constant while encoding the corresponding video sub-stream, but the sub-key is unique for the one encryption pipeline, and differs from corresponding sub-portions of the multi-part encryption counters used by the other encryption pipelines. Other embodiments may be disclosed or claimed.
Abstract:
A method dynamically reconfigures a system on a chip (SOC) comprising multiple semiconductor intellectual property (IP) blocks. The method comprises, when booting a data processing system (DPS) comprising the SOC, automatically allocating different IP blocks to multiple different microsystems within the DPS, based on a static partitioning policy (SPP). The method also comprises, after booting the DPS, determining that reallocation of at least one of the IP blocks is desired, based on (a) monitored conditions of at least one of the microsystems and (b) a dynamic partitioning policy (DPP). The method also comprises, in response to determining that reallocation of at least one of the IP blocks is desired, automatically reallocating at least one of the IP blocks from one of the microsystems to another of the microsystems without resetting at least one of the microsystems. Other embodiments are described and claimed.
Abstract:
In one embodiment of the invention, a format for renewability content (e.g., a System Renewability Message (SRM)) corresponding to a content protection protocol (e.g., High-Bandwidth Digital Content Protection (HDCP)) may be interoperable with devices that are compliant with different versions of the standard (e.g., HDCP1.x and 2.x devices) and that include different amounts of storage for the renewability content (e.g., first and second generation devices).
Abstract:
An embodiment of the invention includes a processing system to provide protected digital content, the processing system comprising a processor and control logic which, when used by the processor, results in the processing system performing operations comprising determining first and second receivers, which are coupled to the processing system, are within a predetermined acceptable proximity to the processing system. The processing system is upstream to the first receiver and the first receiver is upstream to the second receiver. Other embodiments are provided herein.
Abstract:
A method dynamically reconfigures a system on a chip (SOC) comprising multiple semiconductor intellectual property (IP) blocks. The method comprises, when booting a data processing system (DPS) comprising the SOC, automatically allocating different IP blocks to multiple different microsystems within the DPS, based on a static partitioning policy (SPP). The method also comprises, after booting the DPS, determining that reallocation of at least one of the IP blocks is desired, based on (a) monitored conditions of at least one of the microsystems and (b) a dynamic partitioning policy (DPP). The method also comprises, in response to determining that reallocation of at least one of the IP blocks is desired, automatically reallocating at least one of the IP blocks from one of the microsystems to another of the microsystems without resetting at least one of the microsystems. Other embodiments are described and claimed.
Abstract:
An embodiment of the invention includes a processing system to provide protected digital content, the processing system comprising a processor and control logic which, when used by the processor, results in the processing system performing operations comprising determining first and second receivers, which are coupled to the processing system, are within a predetermined acceptable proximity to the processing system. The processing system is upstream to the first receiver and the first receiver is upstream to the second receiver. Other embodiments are provided herein.