Abstract:
Disclosed herein are various embodiments of the systems and methods for management of information among various medical providers and/or facilities. According to various embodiments, the systems and methods disclosed herein may facilitate the completion of location specific forms in a variety of formats by medical professionals. Certain embodiments may be employed by remotely located medical professional utilizing telemedicine technologies. Such systems may provide medical professionals utilizing telemedicine technologies with a consistent interface for gathering and inputting patient information, while continuing to allow for the use of a wide variety of forms by different medical providers and facilities. In addition to facilitating the use of location-specific forms, the systems and methods for management of information disclosed herein may also be used for the collection of patient care metrics.
Abstract:
The present disclosure describes various clinical workflows and other methods that utilize a telemedicine device in a healthcare network. According to various embodiments, a healthcare practitioner may utilize a remote presence interfaces (RPIs) on a remote access device (RAD), such as a portable electronic device (PED) to interface with a telemedicine device. The healthcare practitioner may directly interface with a display interface of a telemedicine device or utilize the RPI on a RAD. The present disclosure provides various clinical workflows involving a telemedicine device to view patient data during a telepresence session, perform rounds to visit multiple patients, monitor a patient, allow for remote visitations by companions, and various other clinical workflow methods.
Abstract:
The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
Abstract:
A proctoring system that includes a communication device coupled to a remote station. The remote station has a visual display that displays first information relating to an action that causes an effect on an object, and simultaneously displays second information relating to the effect on the object. The remote station includes at least one input device that allows a communication to be transmitted by an operator to the communication device. By way of example, during the deployment of a heart stent, a specialist doctor may remotely view real-time fluoroscopy imagery and patient hemodynamics. The specialist can remotely proctor medical personnel on the proper orientation and timing requirements for installing the stent.
Abstract:
A robotic system that can be used to treat a patient. The robotic system includes a mobile robot that has a camera. The mobile robot is controlled by a remote station that has a monitor. A physician can use the remote station to move the mobile robot into view of a patient. An image of the patient is transmitted from the robot camera to the remote station monitor. A medical personnel at the robot site can enter patient information into the system through a user interface. The patient information can be stored in a server. The physician can access the information from the remote station. The remote station may provide graphical user interfaces that display the patient information and provide both a medical tool and a patient management plan.
Abstract:
Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
Abstract:
A proctoring system that includes a communication device coupled to a remote station. The remote station has a visual display that displays first information relating to an action that causes an effect on an object, and simultaneously displays second information relating to the effect on the object. The remote station includes at least one input device that allows a communication to be transmitted by an operator to the communication device. By way of example, during the deployment of a heart stent, a specialist doctor may remotely view real-time fluoroscopy imagery and patient hemodynamics. The specialist can remotely proctor medical personnel on the proper orientation and timing requirements for installing the stent.