Abstract:
A cleaning robot system (5) includes a robot (10) and a robot maintenance station (100,1100,1200,1300,1400). The robot (10) includes a chassis (31), a drive system (45) configured to maneuver the robot (10) as directed by a controller (49), and a cleaning assembly (43) including a cleaning assembly housing (40) and a driven cleaning roller (60,65). The robot maintenance station (100,1100,1200,1300,1400) includes a station housing (120) and a docking platform (122) configured to support the robot (10) when docked. A mechanical agitator (510,520) engages the roller (60,65) of the robot (10) with the robot (10) docked. The agitator (510,520) includes an agitator comb (511) having multiple teeth (512) configured to remove accumulated debris from the roller (60,65) as the agitator comb (511) and roller (60,65) are moved relative to one another. The robot maintenance station (100,1100,1200,1300,1400) includes a collection bin (150) arranged to receive and hold debris removed by the mechanical agitator (510,520).
Abstract:
An autonomous coverage robot includes a chassis (102), a drive system (104) to maneuver the robot, an edge cleaning head (106,214,274,316), and a controller (108) configured to monitor motor current associated with the edge cleaning head and to reverse bias the edge cleaning head motor in response to an elevated motor current, while continuing to maneuver the robot across the floor. In another aspect, the autonomous coverage robot includes a bump sensor (132) and a proximity sensor (134). The drive system is configured to reduce a speed setting in response to a signal from the proximity sensor (134) indicating detection of a potential obstacle in a forward direction, while continuing to advance the robot according to a heading setting. Furthermore, the drive system is configured to alter the heading setting in response to a signal received from the bump sensor (132) indicating contact with an obstacle.
Abstract:
Systems and methods for autonomous control of a vehicle include interruptible, behavior-based, and selective control. Autonomous control is achieved by using actuators that interact with input devices in the vehicle. The actuators (e.g., linkages) manipulate the input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, or accelerator) to direct the operation of the vehicle. Although operating autonomously, manual operation of the vehicle is possible following the detection of events that suggest manual control is desired. Subsequent autonomous control may be permitted, permitted after a prescribed delay, or prevented. Systems and methods for processing safety signals and/or tracking terrain features are also utilized by an autonomous vehicle.
Abstract:
An autonomous coverage robot includes a body, a drive system disposed on the body, and a cleaning assembly disposed on the body and configured to engage a floor surface while the robot is maneuvered across the floor surface. The cleaning assembly includes a driven cleaning roller, a cleaning bin disposed on the body for receiving debris agitated by the cleaning roller, and an air mover. The cleaning bin includes a cleaning bin body having a cleaning bin entrance disposed adjacent to the cleaning roller and a roller scraper disposed on the cleaning bin body for engaging the cleaning roller. The cleaning bin body has a holding portion in pneumatic communication with the cleaning bin entrance, and the air mover is operable to move air into the cleaning bin entrance.
Abstract:
A coverage robot (100) including a chassis (202), multiple drive wheel assemblies (110a-b) disposed on the chassis, and a cleaning assembly (112,102) carried by the chassis. Each drive wheel assembly includes a drive wheel assembly housing (324a-b), a wheel (326a-b) rotatably coupled to the housing, and a wheel drive motor (328a-b) carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly (112,102) includes a cleaning assembly housing (332,338) , a cleaning head (334,340) rotatably coupled to the cleaning assembly housing, and a cleaning drive motor (336,342) carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies (110a-b) and the cleaning assembly (112,102) are each separately and independently removable from respective receptacles (304,306,308,310) of the chassis as complete units.
Abstract:
One aspect of the present disclosure relates to a robot maintenance station comprising a station housing (120), a docking platform (122) carried by the station housing (120) and configured to support a robot (10) when docked, a collection bin (150), a vacuum filter (910) and a cyclonic or other circulatory bagless vacuuming system configured to draw air and debris from the robot cleaning bin (50) to deposit the debris into the debris bin (150) using centripetal acceleration of debris to divert debris from an air flow or the vacuum filter (910).
Abstract:
An autonomous coverage robot includes a chassis (102), a drive system (104) to maneuver the robot, an edge cleaning head (106,214,274,316), and a controller (108) configured to monitor motor current associated with the edge cleaning head and to reverse bias the edge cleaning head motor in response to an elevated motor current, while continuing to maneuver the robot across the floor. In another aspect, the autonomous coverage robot includes a bump sensor (132) and a proximity sensor (134). The drive system is configured to reduce a speed setting in response to a signal from the proximity sensor (134) indicating detection of a potential obstacle in a forward direction, while continuing to advance the robot according to a heading setting. Furthermore, the drive system is configured to alter the heading setting in response to a signal received from the bump sensor (132) indicating contact with an obstacle.
Abstract:
A cleaning robot system (5) includes a robot (10) and a robot maintenance station (100,1100,1200,1300,1400). The robot (10) includes a chassis (31), a drive system (45) configured to maneuver the robot (10) as directed by a controller (49), and a cleaning assembly (43) including a cleaning assembly housing (40) and a driven cleaning roller (60,65). The robot maintenance station (100,1100,1200,1300,1400) includes a station housing (120) and a docking platform (122) configured to support the robot (10) when docked. A mechanical agitator (510,520) engages the roller (60,65) of the robot (10) with the robot (10) docked. The agitator (510,520) includes an agitator comb (511) having multiple teeth (512) configured to remove accumulated debris from the roller (60,65) as the agitator comb (511) and roller (60,65) are moved relative to one another.; The robot maintenance station (100,1100,1200,1300,1400) includes a collection bin (150) arranged to receive and hold debris removed by the mechanical agitator (510,520).
Abstract:
An autonomous coverage robot includes a chassis (102), a drive system (104) to maneuver the robot, an edge cleaning head (106,214,274,316), and a controller (108) configured to monitor motor current associated with the edge cleaning head and to reverse bias the edge cleaning head motor in response to an elevated motor current, while continuing to maneuver the robot across the floor. In another aspect, the autonomous coverage robot includes a bump sensor (132) and a proximity sensor (134). The drive system is configured to reduce a speed setting in response to a signal from the proximity sensor (134) indicating detection of a potential obstacle in a forward direction, while continuing to advance the robot according to a heading setting. Furthermore, the drive system is configured to alter the heading setting in response to a signal received from the bump sensor (132) indicating contact with an obstacle.
Abstract:
A cleaning robot system (5) includes a robot (10) and a robot maintenance station (100,1100,1200,1300,1400). The robot (10) includes a chassis (31), a drive system (45) configured to maneuver the robot (10) as directed by a controller (49), and a cleaning assembly (43) including a cleaning assembly housing (40) and a driven cleaning roller (60,65). The robot maintenance station (100,1100,1200,1300,1400) includes a station housing (120) and a docking platform (122) configured to support the robot (10) when docked. A mechanical agitator (510,520) engages the roller (60,65) of the robot (10) with the robot (10) docked. The agitator (510,520) includes an agitator comb (511) having multiple teeth (512) configured to remove accumulated debris from the roller (60,65) as the agitator comb (511) and roller (60,65) are moved relative to one another.; The robot maintenance station (100,1100,1200,1300,1400) includes a collection bin (150) arranged to receive and hold debris removed by the mechanical agitator (510,520).