Abstract:
A semiconductor device having a channel region that is formed in a germanium layer and has a first conductive type, and a source region and a drain region that are formed in the germanium layer and have a second conductive type different from the first conductive type, wherein an oxygen concentration in the channel region is less than an oxygen concentration in a junction interface between at least one of the source region and the drain region and a region that surrounds the at least one of the source region and the drain region and has the first conductive type.
Abstract:
A semiconductor structure includes: a germanium layer 30; and an insulating film that has a film 32 that includes a germanium oxide and is formed on the germanium layer and a high dielectric oxide film 34 that is formed on the film including the germanium oxide and has a dielectric constant higher than that of a silicon oxide, wherein: an EOT of the insulating film is 2 nm or less; and on a presumption that an Au acting as a metal film is formed on the insulating film, a leak current density is 10−5×EOT+4 A/cm2 or less in a case where a voltage of the metal film with respect to the germanium layer is applied from a flat band voltage to an accumulation region side by 1 V.
Abstract:
A semiconductor structure includes: a germanium layer 30; and an insulating film that has a film 32 that includes a germanium oxide and is formed on the germanium layer and a high dielectric oxide film 34 that is formed on the film including the germanium oxide and has a dielectric constant higher than that of a silicon oxide, wherein: an EOT of the insulating film is 2 nm or less; and on a presumption that an Au acting as a metal film is formed on the insulating film, a leak current density is 10−5×EOT+4 A/cm2 or less in a case where a voltage of the metal film with respect to the germanium layer is applied from a flat band voltage to an accumulation region side by 1 V.
Abstract:
A method of manufacturing a semiconductor substrate includes: heat-treating a germanium layer 30 with an oxygen concentration of 1×1016 cm−3 or greater in a reducing gas atmosphere at 700° C. or greater. Alternatively, a method of manufacturing a semiconductor substrate includes heat-treating a germanium layer 30 having an oxygen concentration of 1×1016 cm−3 or greater in a reducing gas atmosphere so that the oxygen concentration decreases.