Abstract:
The present disclosure includes a battery module having a power assembly that includes a plurality of battery cells and a plurality of bus bars that electrically couples a terminal of each of the plurality of battery cells to a terminal of an adjacent battery cell of the plurality of battery cells. The battery module also includes a lead frame that includes a plurality of cell taps respectively electrically coupled to the plurality of bus bars of the power assembly, and a plurality of leads that extends from the plurality of cell taps. The lead frame also includes a plurality of removable interconnects that are broken after assembly to electrically isolate the plurality of cell taps from one another and electrically isolate the plurality of leads from one another.
Abstract:
The present disclosure provides a battery pack including a housing, wherein the housing has a bottom portion and side walls extending upward around a periphery of the bottom portion; an upper portion opening is formed at top ends of the side walls extending upward; an upper cover is mounted on the upper portion opening of the housing; and the battery pack comprises: multiple flat battery cells; and a first end plate and a second end plate, wherein when the multiple battery cells are sequentially arranged and mounted into the housing from the upper portion opening, the first end plate and the second end plate are located at two end sides of the sequentially arranged multiple battery cells to laterally fix the sequentially arranged multiple battery cells. The two end plates may absorb deformation of the battery cell while expanding.
Abstract:
The present disclosure provides a battery pack for a hybrid vehicle. The battery pack includes: multiple battery cells, a housing, a first end plate, a second end plate, a bearing plate and an upper cover, wherein the housing is provided with a bottom portion and side walls extending from the periphery of the bottom portion and forming an upper portion opening; the housing is configured for accommodating the multiple battery cells and the two end plates, when the multiple battery cells are sequentially arranged and mounted into the housing, the first end plate and the second end plate are located at two end sides of the sequentially arranged multiple battery cells to laterally fix the multiple battery cells; the bearing plate is mounted above the top portions of the multiple battery cells; and the upper cover is mounted above the housing to cover the upper portion opening of the housing.
Abstract:
The present disclosure relates to a battery module that includes a housing having a first opening configured to receive one or more battery cells and an electrical component, a housing cover (54) configured to be disposed over the first opening to enclose the one or more battery cells and the electrical component in the housing, a signal connector (50) disposed within the housing and electrically coupled to the electrical component, where the signal connector is configured to be actuated from a first position to a second position, and a vent port (55) in alignment with the signal connector such that the signal connector is accessible to a push device passing through the vent port to facilitate directing the signal connector into the second position and toward a second opening (56) of the housing cover when the housing cover is disposed over the first opening.
Abstract:
A lithium ion (Li-ion) battery module includes a module terminal configured to electrically couple the Li-ion battery module to an electrical connector of an external load. The module terminal includes a conductive component and a sealing shim secured to the conductive component, the sealing shim being formed from a polymeric material. The Li-ion battery module includes a housing containing a plurality of Li-ion battery cells and having an opening through which the conductive component of the module terminal at least partially protrudes. The sealing shim of the module terminal is directly secured to the housing and forms a seal isolating an interior of the housing from the external environment.
Abstract:
The present disclosure includes a battery module having a power assembly that includes a plurality of battery cells and a plurality of bus bars that electrically couples a terminal of each of the plurality of battery cells to a terminal of an adjacent battery cell of the plurality of battery cells. The battery module also includes a lead frame that includes a plurality of cell taps respectively electrically coupled to the plurality of bus bars of the power assembly, and a plurality of leads that extends from the plurality of cell taps. The lead frame also includes a plurality of broken interconnects that electrically isolates the plurality of cell taps from one another and electrically isolates the plurality of leads from one another.
Abstract:
The present disclosure includes a battery module having a power assembly that includes a plurality of battery cells and a plurality of bus bars that electrically couples a terminal of each of the plurality of battery cells to a terminal of an adjacent battery cell of the plurality of battery cells. The battery module also includes a lead frame that includes a plurality of cell taps respectively electrically coupled to the plurality of bus bars of the power assembly, and a plurality of leads that extends from the plurality of cell taps. The lead frame also includes a plurality of broken interconnects that electrically isolates the plurality of cell taps from one another and electrically isolates the plurality of leads from one another.