Abstract:
A glass paste composition contains: (A) glass powders (B) a binder resin; and (C) at least one organic solvent selected from a ketone, an alcohol and an ester which has property that the normal boiling point is 100 to 200 DEG C, and the vapor pressure at 20 DEG C is 0.5 to 50 mmHg. A plasma display panel is produced by a method which comprises coating the glass paste composition on a base film to form a film forming material layer; transferring the film forming material layer formed on the base film to a glass substrate; and baking the transferred film forming material layer to form a dielectric layer on the surface of the glass substrate.
Abstract:
A glass paste composition contains: (A) glass powders (B) a binder resin; and (C) at least one organic solvent selected from a ketone, an alcohol and an ester which has property that the normal boiling point is 100 to 200 DEG C, and the vapor pressure at 20 DEG C is 0.5 to 50 mmHg. A plasma display panel is produced by a method which comprises coating the glass paste composition on a base film to form a film forming material layer; transferring the film forming material layer formed on the base film to a glass substrate; and baking the transferred film forming material layer to form a dielectric layer on the surface of the glass substrate.
Abstract:
Provided is a tire member which is satisfactory in low fuel consumption performance and exhibits higher strength and more excellent abrasion resistance as compared with conventional ones. The tire member is a tire member obtained by subjecting a composition containing a hydrogenated conjugated diene polymer and a crosslinking agent to a crosslinking treatment, wherein the hydrogenated conjugated diene polymer is a hydrogenated product of a conjugated diene polymer that has a structural unit derived from butadiene and has a functional group at one end or both ends and the functional group is one or more groups selected from the group consisting of an amino group, an imino group, a pyridyl group, a phosphino group, a thiol group, and a hydrocarbyloxysilyl group.
Abstract:
[Problem] To provide a method for producing a hydrogenated conjugated diene polymer that is excellent in the improvement in dispersibility at the time of compounding with a filler, is excellent in the reduction in hysteresis loss after compounding, and enables the formation of a polymer alloy which has excellent processability at the time of compounding with a thermoplastic resin or the like and has excellent physical properties after compounding. [Means for solution] A method for producing a hydrogenated conjugated diene polymer, the method comprising a step of polymerizing at least a conjugated diene compound in the presence of a polymerization initiator composed of an amine compound having at least one structure of the formulae (x) and (y) and at least one metal compound selected from alkali metal compounds and alkaline earth metal compounds to obtain a conjugated diene polymer and a step of hydrogenating the conjugated diene polymer. wherein, in the formula (x), R 1 is a hydrocarbylene group, the hydrocarbylene group in R 1 may contain a heteroatom as long as the hydrocarbylene group does not have an active hydrogen atom, and A 1 is a trihydrocarbylsilyl group; in the formula (y), R 2 and R 3 are each independently a hydrocarbylene group, the hydrocarbylene group in each of R 2 and R 3 may contain a heteroatom as long as the hydrocarbylene group does not have an active hydrogen atom, and A 2 is a functional group which has at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, has a trihydrocarbylsilyl group, and does not have an active hydrogen atom and in which the atom that is bonded to R 3 is N, P or S; and the above R 1 and A 1 may be bonded to each other to form a cyclic structure and a part of the above R 2 , R 3 , and A 2 may be bonded to each other to form a cyclic structure.
Abstract:
A modified conjugated diene-based polymer is produced that is a modified product of a conjugated diene-based polymer obtained by polymerizing a conjugated diene compound, or polymerizing a conjugated diene compound and an aromatic vinyl compound, in the presence of an alkali metal compound or an alkaline-earth metal compound. The modified conjugated diene-based polymer is produced by a production method that includes a main chain modification step that reacts at least either an unsaturated bond or a functional group that is included in a terminal-modified polymer and is not situated at a terminal of the terminal-modified polymer, with a specific compound that includes a functional group that interacts with silica, the terminal-modified polymer being obtained by introducing a functional group that interacts with silica into at least one terminal of the conjugated diene-based polymer.
Abstract:
A cross-linked rubber exhibits high strength and excellent abrasion resistance as compared with a known cross-linked rubber. The cross-linked rubber is obtained by cross-linking a rubber composition that includes a hydrogenated conjugated diene-based polymer, an olefin-based rubber, and a cross-linking agent, the hydrogenated conjugated diene-based polymer being a hydrogenated product of a polymer that includes a structural unit derived from butadiene, and including at least one of an amino group and a hydrocarbyloxysilyl group at one terminal or each terminal.
Abstract:
[Problem] To provide a method for producing a hydrogenated conjugated diene polymer that is excellent in the improvement in dispersibility at the time of compounding with a filler, is excellent in the reduction in hysteresis loss after compounding, and enables the formation of a polymer alloy which has excellent processability at the time of compounding with a thermoplastic resin or the like and has excellent physical properties after compounding. [Means for solution] A method for producing a hydrogenated conjugated diene polymer, the method comprising a step of polymerizing at least a conjugated diene compound in the presence of a polymerization initiator composed of an amine compound having at least one structure of the formulae (x) and (y) and at least one metal compound selected from alkali metal compounds and alkaline earth metal compounds to obtain a conjugated diene polymer and a step of hydrogenating the conjugated diene polymer. wherein, in the formula (x), R 1 is a hydrocarbylene group, the hydrocarbylene group in R 1 may contain a heteroatom as long as the hydrocarbylene group does not have an active hydrogen atom, and A 1 is a trihydrocarbylsilyl group; in the formula (y), R 2 and R 3 are each independently a hydrocarbylene group, the hydrocarbylene group in each of R 2 and R 3 may contain a heteroatom as long as the hydrocarbylene group does not have an active hydrogen atom, and A 2 is a functional group which has at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, has a trihydrocarbylsilyl group, and does not have an active hydrogen atom and in which the atom that is bonded to R 3 is N, P or S; and the above R 1 and A 1 may be bonded to each other to form a cyclic structure and a part of the above R 2 , R 3 , and A 2 may be bonded to each other to form a cyclic structure.
Abstract:
Provided is a polymer composition for use in the production of a crosslinked polymer having excellent tensile strength and abrasion resistance. A polymer composition comprising a polymer having multiple anionic functional groups and a polymer having multiple nitrogenated functional groups each represented by formula (1). The anionic functional groups are at least one group selected from a carboxy group, a sulfo group and a phosphate group. In one embodiment, each of the nitrogenated functional groups represented by formula (1) is bound to a structure derived from a conjugated diene compound or a structure derived from an aromatic vinyl compound.