Abstract:
A battery system may include multiple battery cells having different chemistries. To achieve certain performance goals, voltage parameters for the battery system, such as cruising voltages and maximum voltages can be adjusted. These adjustments may, for example, direct charging currents to a lithium-ion battery to increase fuel economy or may direct charging currents away from a lithium-ion battery to increase its longevity. Methods for matching batteries having different chemistries based on their open circuit voltages are also discussed.
Abstract:
The present disclosure relates generally to the field of batteries and battery modules. More specifically, the present disclosure relates to battery cells that may be used in vehicular contexts, as well as other energy storage/expending applications. An electrolyte solution includes at least one ester solvent and a plurality of additives. In particular, the plurality of additives includes a cyclic carbonate-based additive, a sultone-based additive, and either a borate-based additive or an imide-based additive. The presently disclosed electrolyte solutions enable the manufacture of battery cells having a wide operating temperature range (e.g., between approximately −30° C. and approximately 60° C.).
Abstract:
A micro-hybrid battery system includes a lithium ion battery module configured to be coupled to an electrical load. The lithium ion battery module includes a housing. The lithium ion battery module also includes a first lithium ion battery cell disposed in the housing and having a first active material chemistry including a first cathode active material and a first anode active material. The lithium ion battery module also includes a second lithium ion battery cell electrically connected to the first lithium ion battery cell and disposed in the housing. The second lithium ion battery cell has a second active material chemistry including a second cathode active material and a second anode active material. The first and second active material chemistries are different such that the first and second lithium ion battery cells have different open circuit voltages.
Abstract:
Embodiments describe a battery system that includes a first battery module coupled to a regenerative braking system and a control module that controls operation of the battery system by: determining a predicted driving pattern over a prediction horizon using a driving pattern recognition model based in part on a battery current and a previous driving pattern; determining a predicted battery resistance of the first battery module over the prediction horizon using a recursive battery model based in part on the predicted driving pattern, the battery current, a present bus voltage, and a previous bus voltage; determining a target trajectory of a battery temperature of the first battery module over a control horizon using an objective function; and controlling magnitude and duration of electrical power supplied from the regenerative such that a predicted trajectory of the battery temperature is guided toward the target trajectory of the battery temperature during the control horizon.
Abstract:
A micro-hybrid battery system includes a lithium ion battery module configured to be coupled to an electrical load. The lithium ion battery module includes a housing. The lithium ion battery module also includes a first lithium ion battery cell disposed in the housing and having a first active material chemistry including a first cathode active material and a first anode active material. The lithium ion battery module also includes a second lithium ion battery cell electrically connected to the first lithium ion battery cell and disposed in the housing. The second lithium ion battery cell has a second active material chemistry including a second cathode active material and a second anode active material. The first and second active material chemistries are different such that the first and second lithium ion battery cells have different open circuit voltages.
Abstract:
Embodiments describe a battery system that includes a first battery module coupled to a regenerative braking system and a control module that controls operation of the battery system by: determining a predicted driving pattern over a prediction horizon using a driving pattern recognition model based in part on a battery current and a previous driving pattern; determining a predicted battery resistance of the first battery module over the prediction horizon using a recursive battery model based in part on the predicted driving pattern, the battery current, a present bus voltage, and a previous bus voltage; determining a target trajectory of a battery temperature of the first battery module over a control horizon using an objective function; and controlling magnitude and duration of electrical power supplied from the regenerative such that a predicted trajectory of the battery temperature is guided toward the target trajectory of the battery temperature during the control horizon.
Abstract:
A battery system includes a lithium ion battery configured to couple to an electrical system, and a battery management system configured to electrically couple to the lithium ion battery and to control one or more recharge parameters of the lithium ion battery. The battery management system is programmed with an electrochemical model, and the battery management system is configured to monitor parameters of the lithium ion battery, and to control the one or more recharge parameters of the lithium ion battery based on the electrochemical model and the one or more monitored parameters. The electrochemical model determines lithium plating reaction kinetics at an anode of the lithium ion battery, determines a quantity of plated lithium at the anode of the lithium ion battery, or both, and indicates a relationship between the one or more monitored parameters and the lithium plating reaction kinetics, the quantity of plated lithium, or both.
Abstract:
A battery system includes a lithium ion battery that couples to an electrical system. The battery system also includes a battery management system that electrically couples to the lithium ion battery and controls one or more recharge parameters of the lithium ion battery. Additionally, the battery management system monitors one or more parameters of the lithium ion battery. Further, the battery management system controls the recharge parameters of the lithium ion battery based on at least one lithium plating model and the monitored parameters. Furthermore, the at least one lithium plating model indicates a relationship between the one or more parameters of the lithium ion battery and a likelihood of lithium plating occurring in the lithium ion battery.
Abstract:
A battery system includes a lithium ion battery that couples to an electrical system. The battery system also includes a battery management system that electrically couples to the lithium ion battery and controls one or more recharge parameters of the lithium ion battery. Additionally, the battery management system monitors one or more parameters of the lithium ion battery. Further, the battery management system controls the recharge parameters of the lithium ion battery based on at least one lithium plating model and the monitored parameters. Furthermore, the at least one lithium plating model indicates a relationship between the one or more parameters of the lithium ion battery and a likelihood of lithium plating occurring in the lithium ion battery.
Abstract:
A module-based framework evaluates designs of advanced start stop systems, particularly 12V advanced start stop systems. The framework separates vehicle and battery analysis and uses a power profile to evaluate different designs of the vehicles and batteries. Particularly, the framework can evaluate different battery solutions and compare performances as a function of drive cycles, motor size, and electrical loads. In addition to modeling, actual batteries are tested for the same power inputs for validating performance differences. This framework identifies performance limiting components for determination of the vehicle system component optimization.