Abstract:
An optical assembly includes a combination of laser sources emitting radiation, focused by a combination of lenses into optical waveguides. The optical waveguide and the laser source are permanently attached to a common carrier, while at least one of the lenses is attached to a holder that is an integral part of the carrier, but is free to move initially. Micromechanical techniques are used to adjust the position of the lens and holder, and then fix the holder it into place permanently using integrated heaters with solder.
Abstract:
A directly driven laser includes multiple contacts, with at least one of the contacts for injecting current into the laser such that the laser reaches at least a lasing threshold and at least one of the contacts for providing a data signal to the laser. In some embodiments a differential data signal is effectively provided to a front and a rear section of the laser, while lasing threshold current is provided to a central portion of the laser.
Abstract:
A MEMS based alignment technology based on mounting an optical component on a released micromechanical lever configuration that uses multiple flexures rather than a single spring. The optical component may be a lens. The use of multiple flexures may reduce coupling between lens rotation and lens translation, and reduce effects of lever handle warping on lens position. The device can be optimized for various geometries.
Abstract:
An optical assembly includes a combination of laser sources emitting radiation, focused by a combination of lenses into optical waveguides. The optical waveguide and the laser source are permanently attached to a common carrier, while at least one of the lenses is attached to a holder that is an integral part of the carrier, but is free to move initially. Micromechanical techniques are used to adjust the position of the lens and holder, and then fix the holder it into place permanently using integrated heaters with solder.
Abstract:
An assembly of waveguide wavelength multiplexers and demultiplexers, together with continuous wave (CW) laser transmitters that interface to grating couplers on a silicon photonics chip, providing CW sources, multiplexed output and optionally multiplexed input, all using a single photonic lightwave circuit (PLC).
Abstract:
A MEMS based alignment technology based on mounting an optical component on a released micromechanical lever configuration that uses multiple flexures rather than a single spring. The optical component may be a lens. The use of multiple flexures may reduce coupling between lens rotation and lens translation, and reduce effects of lever handle warping on lens position. The device can be optimized for various geometries.