Abstract:
Systems and methods for largescale nanotemplate and nanowire fabrication are provided. The system can include a sample holder and one or more chemical containers fluidly connected to the sample holder. The sample holder can be configured to contain a solution and to releasably hold a substrate material within the solution. In other aspects, the system can include a robotic arm including a head configured to releasably hold a substrate material. The methods can include initiating a treatment step by moving a chemical solution from a chemical container to the sample holder to submerge the substrate material for a period of time. The methods can include moving the robotic arm to position the substrate in a chemical container. The treatment steps can be stopped by removing the chemical solution from the sample holder or by moving the robotic arm to remove the substrate from the chemical container. The treatment steps can include degreasing, polishing, rinsing, anodization, and deposition.
Abstract:
Nanoneedles and nanoneedle arrays and methods of making nanoneedles are provided. The methods can include multilayer fabrication methods using a negative photoresist and/or a positive photoresist. The nanoneedle arrays include one or more nanoneedles attached to a surface of a substrate. The nanoneedle can have both a proximal opening and a distal opening, and an inner passageway connecting the proximal opening and the distal opening. The nanoneedle can have a functional coating. The nanoneedle can include iron, cobalt, nickel, gold, and oxides and alloys thereof. The nanoneedle arrays can be used for the administration and/or the extraction of agents from individual cells. In one or more aspects, the nanoneedles can be magnetic nanoneedles. An oscillating magnetic field applied to a magnetic nanoneedle can induce one or both of heating and vibration of the magnetic nanoneedle. The heating and/or vibration can cause a magnetic nanoneedle to penetrate the wall of a cell.
Abstract:
A microelectromechanical system (MEMS) switch with liquid dielectric and a method of fabrication thereof are provided. In the context of the MEMS switch, a MEMS switch is provided including a cantilevered source switch, a first actuation gate disposed parallel to the cantilevered source switch, a first drain disposed parallel to a movable end of the cantilevered source switch, and a liquid dielectric disposed within a housing of the microelectromechanical system switch.
Abstract:
Magnetic sensors are disclosed, as well as methods for fabricating and using the same. In some embodiments, an EMR effect sensor includes a semiconductor layer. In some embodiments, the EMR effect sensor may include a conductive layer substantially coupled to the semiconductor layer. In some embodiments, the EMR effect sensor may include a first voltage lead coupled to the semiconductor layer. In some embodiments, the first voltage lead may be configured to provide a voltage for measurement by a voltage measurement circuit. In some embodiments, the EMR effect sensor may include a second voltage lead coupled to the conductive layer. In some embodiments, the second voltage lead may be configured to provide a voltage for measurement by a voltage measurement circuit. Embodiments of a Hall effect sensor having the same or similar structure are also disclosed.
Abstract:
The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (μΤΑS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.
Abstract:
Nanoneedles and nanoneedle arrays and methods of making nanoneedles are provided. The methods can include multilayer fabrication methods using a negative photoresist and/or a positive photoresist. The nanoneedle arrays include one or more nanoneedles attached to a surface of a substrate. The nanoneedle can have both a proximal opening and a distal opening, and an inner passageway connecting the proximal opening and the distal opening. The nanoneedle can have a functional coating. The nanoneedle can include iron, cobalt, nickel, gold, and oxides and alloys thereof. The nanoneedle arrays can be used for the administration and/or the extraction of agents from individual cells. In one or more aspects, the nanoneedles can be magnetic nanoneedles. An oscillating magnetic field applied to a magnetic nanoneedle can induce one or both of heating and vibration of the magnetic nanoneedle. The heating and/or vibration can cause a magnetic nanoneedle to penetrate the wall of a cell.